Table of Contents

Welcome to ABSYNTH! ... 1

Product Authorization ... 3
What is the Product Authorization? 3
Conducting the Product Authorization 5
Registration support ... 11

Installation under Windows XP 13
System Requirements and Recommendations 13
Software Installation .. 13
VST plug-in Installation 14
DXi 2 plug-in Setup ... 14

Installation under MacOS X 16
System Requirements and Recommendations 16
Installing Absynth 3 OS X 16
MacOS Audio Unit plug-in Installation 17
Mac/Windows RTAS plug-in installation 17

Audio Interfaces .. 18
Stand-alone Application 18
Plug-In .. 19

Absynth 3 as Standalone 22
Soundcard (Audio Interface) 22
Routing .. 24
MIDI ... 25

Absynth 3 as Plug-In .. 26
VST 2.0 plug-in .. 26
DXi 2 Plug-in .. 32

Main window .. 35
Navigation Bar .. 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch window</td>
<td>41</td>
</tr>
<tr>
<td>Modules</td>
<td>41</td>
</tr>
<tr>
<td>Oscil module</td>
<td>42</td>
</tr>
<tr>
<td>Wavetable synthesis modes</td>
<td>43</td>
</tr>
<tr>
<td>Sampling modes</td>
<td>49</td>
</tr>
<tr>
<td>Audio In mode</td>
<td>53</td>
</tr>
<tr>
<td>Filter module</td>
<td>54</td>
</tr>
<tr>
<td>Mod module</td>
<td>55</td>
</tr>
<tr>
<td>Mono/surround</td>
<td>57</td>
</tr>
<tr>
<td>Waveshape module</td>
<td>58</td>
</tr>
<tr>
<td>Effect module</td>
<td>59</td>
</tr>
<tr>
<td>More Parameter Control</td>
<td>59</td>
</tr>
<tr>
<td>Wave window</td>
<td>61</td>
</tr>
<tr>
<td>Waveform mode</td>
<td>62</td>
</tr>
<tr>
<td>Spectrum mode</td>
<td>65</td>
</tr>
<tr>
<td>Effect window</td>
<td>67</td>
</tr>
<tr>
<td>Multicomb mode (pictured above)</td>
<td>67</td>
</tr>
<tr>
<td>Pipe mode</td>
<td>68</td>
</tr>
<tr>
<td>Multitap mode</td>
<td>69</td>
</tr>
<tr>
<td>Echos mode</td>
<td>69</td>
</tr>
<tr>
<td>Resonators mode</td>
<td>70</td>
</tr>
<tr>
<td>Envelope window</td>
<td>73</td>
</tr>
<tr>
<td>Envelope modes</td>
<td>77</td>
</tr>
<tr>
<td>LFO window</td>
<td>89</td>
</tr>
<tr>
<td>LFOs and surround panning</td>
<td>92</td>
</tr>
<tr>
<td>MIDI window</td>
<td>93</td>
</tr>
<tr>
<td>Working with Custom Tunings</td>
<td>95</td>
</tr>
<tr>
<td>Universal Library</td>
<td>97</td>
</tr>
<tr>
<td>Patch Window Library Functions</td>
<td>97</td>
</tr>
<tr>
<td>Envelope and Waveform Window Library Functions</td>
<td>97</td>
</tr>
<tr>
<td>Copy and Paste</td>
<td>97</td>
</tr>
<tr>
<td>Just try it out</td>
<td>98</td>
</tr>
<tr>
<td>Record window</td>
<td>99</td>
</tr>
<tr>
<td>Global Tempo Sync</td>
<td>102</td>
</tr>
</tbody>
</table>
Welcome to ABSYNTH!

Thank you for purchasing ABSYNTH.

ABSYNTH is a unique, inimitable synthesizer, offering unparalleled possibilities. From futuristic synths to rhythmic mayhem, vintage sounds to ambient layers and completely unique, alien soundscapes – ABSYNTH seduces with its sublime sounds.

Combining subtractive synthesis, FM, ring modulation, classic and granular sampling with the most advanced envelope control ever implemented, ABSYNTH leads the way for software synthesizers. The innovative user-interface merges sophistication with simplicity, providing an unrivalled sound design experience.

Constantly moving and morphing textures can be generated with the flexible 68-breakpoint envelopes. You can carefully model new waveforms one harmonic at a time, or use the real-time waveform fractalization functions to create a host of lively, individual sounds.

With live audio input ABSYNTH becomes an extraordinary effect unit. Route other instruments through it, twisting and contorting your sounds into unimaginable sonic shapes. ABSYNTH’s compatibility with every popular plug-in format ensures seamless integration into every studio setup.
Product Authorization

Part of the ABSYNTH installation is a Product Authorization which has to be fulfilled in order to make permanent use of the software. We recommend that you take notice of this chapter first, then proceed with the software installation as described in the following chapters and finally return to this chapter.

What is the Product Authorization?

The Product Authorization includes a full registration. After having completed the authorization, you can make use of all online services related to the registered product. On the Native Instruments website you can read online tutorials, get technical support, participate in the NI forums and download updates.

ABSYNTH requires the Product Authorization in order to use the software permanently. You can run ABSYNTH for 30 days without any limitations. As long as the software runs unauthorized a message at every program start reminds you that the authorization has not been completed yet and indicates how many more days the software is running without an authorization.

The Product Authorization is performed by a small application called Registration Tool. The Registration Tool generates a so called System ID which serves as request code for receiving an Authorization Key. The
System ID is based on some hardware components of your computer system, the operating system version and the serial number you have entered at the ABSYNTH installation.

Registration Tool

Note: Exchanging your audio card, MIDI interface or external equipment will not start the request for a new Authorization Key. Only exchanging a basic hardware component in your computer or installing a new operating system might produce a new Product Authorization request. In this case the Registration Tool will reflect the change by displaying a new System ID and you have to repeat the Product Authorization.

The System ID has to be sent to Native Instruments in order to receive the Authorization Key which allows the permanent use of ABSYNTH. Since the Product Authorization is part of the license agreement ABSYNTH will stop launching after 30 days if it was not authorized until
then. Of course, it is also possible to complete the Product Authorization after 30 days. In this case the software will launch again as soon as the Product Authorization has been completed.

Note: The data transfer at the online Product Authorization is done via a secure connection using 128 bit encryption. Native Instruments keeps your personal data like email and postal address in confidence. No data will be passed to a third party.

Conducting the Product Authorization

Native Instruments has set a high value on making the authorization procedure as easy and comfortable as possible. In the following sections we describe three methods of conducting the Product Authorization. We recommend Method A and Method B since these result in the easiest and fastest way of receiving the Authorization Key.

Method A: Absynth computer has direct access to the internet

Important: This method requires a valid email address to complete the Product Authorization, since the registration code will be sent to you by email.

- **Windows**: Start the Registration Tool from the start menu (Native Instruments Absynth 3 ⇒ Absynth 3 Registration Tool) or from the ABSYNTH installation folder (default path: C:\Program Files\Native Instruments\Absynth 3).

- **MacOS**: Start the Registration Tool from the ABSYNTH installation folder (default path: Applications\Absynth 3).

Absynth 3

English – 5
A click on the **Register Now** button opens the Native Instruments registration webpage. Therefore your standard Internet Browser will be opened and an internet connection will be established according to your system settings. Your **System ID** will be automatically transmitted to the registration form.

On the first online page you are asked if it is your **First Registration** at Native Instruments or if you want to do an **Additional Registration**.

Depending on the option you have chosen on the first online page you now get a login page asking for your username and password or a form where you can fill out your address data. Please fill out all required fields and follow the instructions on the screen to complete the registration.

On the last online registration page your **Authorization Key** is directly shown in the browser. Please copy the full number (12 x 5 digits) and paste it to the registration tool. Within a few minutes you will also receive an email from the Native Instruments registration system containing the **Authorization key**. The **Authorization key** is available in the email body and additionally as text attachment. This email also contains the password which is required for using the online services.
• Start the **Registration Tool** again and either copy the **Authorization Key** from the email and press the **Paste from Clipboard** button in the Registration Tool or use the **Open File** button in the Registration Tool to open the email attachment which you previously have saved to hard disk.

![Registration Tool](image)

• Click on the **Complete** button.

![Complete Button](image)

After completing the Product Authorization the Registration Tool looks like this

Now the ABSYNTH **Product Authorization** has been completed. The authorization message at every ABSYNTH start has disappeared and you can use the software permanently:

Method B: Internet Connection on another computer

Important: This method requires a valid email address to complete the Product Authorization, since the **Authorization Key** will be send to you by email.

• **Windows**: Start the **Registration Tool** from the start menu (**Native Instruments Absynth 3** → **Absynth 3 Registration Tool**) or from the ABSYNTH installation folder (default path: **C:\Program Files\Native Instruments\Absynth 3**).
- MacOS: Start the Registration Tool from the ABSYNTH installation folder (default path: Applications\Absynth 3).

- A click on the Save Registration File button opens a Save dialog for saving a HTML file. Save the HTML file to any storage medium.

- Transfer the HTML file to another computer where you have internet access (via floppy disk, CDR etc.).

- Open the HTML file in your internet browser.

- The HTML page contains a link for the registration page on the Native Instruments website. When you click on this link an internet connection will be established according to your system settings.

- On the first online page you are asked if it is your First Registration at Native Instruments or if you want to do an Additional Registration.

- Depending on the option you have chosen on the first online page you now get a login page asking for your username and password or a form where you can fill out your address data. Please fill out all required fields and follow the instructions on the screen to complete the registration.

- Within a few minutes you will receive an email from the Native Instruments registration system containing the Authorization key. The Authorization key is available in the email body and additionally as text attachment. This email also contains the password which is required for using the online services.

- Transfer the text attachment to the computer where you have installed ABSYNTH.
• Start the **Registration Tool** again and use the **Open File** button in the Registration Tool to open the email attachment which you previously have saved to hard disk.

![Open File Button]

• Click on the **Complete** button.

![Complete Button]

After completing the Product Authorization the Registration Tool looks like this

Now the ABSYNTH **Product Authorization** has been completed. The authorization message at every ABSYNTH start has disappeared and you can use the software permanently:

Method C: No Internet Connection available

Important: Following this method you will have to fill in a form which you send to Native Instruments. You will receive the **Authorization Key** either by email (recommended), by postal mail or by fax. If you do not provide Native Instruments with a valid email address in the form, be prepared to type in the Authorization Key manually (about 60 digits).

If you do not have access to the internet or if you do not have a working email address, the **Product Authorization** can also be done via postal mail or fax. Although Native Instruments goes after a fast handling of your authorization requests, it is generally recommended that you prefer **Method A** or **Method B** for shortest return times and most comfortable operation. Please note the following instructions to fullfill the **Product Authorization**:
Windows: Start the Registration Tool from the Windows start menu (Native Instruments Absynth 3 ⇒ Absynth 3 Registration Tool) or from the ABSYNTH installation folder (default path: C:\Program Files\Native Instruments\Absynth 3).

MacOS: Start the Registration Tool from the ABSYNTH installation folder (default path: Applications\Absynth 3).

A click on the Fill Out Form button opens a local HTML file in the operating system’s standard browser or another program which you have defined as standard application for opening HTML files.

The HTML file contains all information Native Instruments requires for completing the Product Authorization and registration. Please fill in the required data and print it out, or write a letter containing the data.

If you write a letter please attend to a legible handwriting to avoid mistakes at the Native Instruments registration team. Not legible email or postal addresses can cause problems with the Authorization Key delivery.

Send the form to Native Instruments using one of the following contact addresses:

Native Instruments GmbH
Registration
Schlesische Straße 28
You will receive the Authorization Key via email (recommended), fax or mail.

Start the Registration Tool again and either copy the Authorization Key from the email and press the Paste from Clipboard button in the Registration Tool or use the Open File button in the Registration Tool to open the email attachment which you previously have saved to hard disk. If you have received the Authorization Key by mail or fax, type it in manually.

Click on the Complete button.

Now the ABSYNTH Product Authorization has been completed. The authorization message at every ABSYNTH start has disappeared and you can use the software permanently:

Registration support

If you run into problems during the Product Authorization the Native Instruments registration support team will be happy to help you. In this case send a support request on the NI website using the following URL:

http://www.native-instruments.com/registersupport.info

Please describe the occurred problem as accurate as possible and provide the registration support team with the necessary details to solve the problem.
Installation under Windows XP

System Requirements and Recommendations

To use the ABSYNTH software, you need a computer with the following minimum specifications:

Hardware

- Pentium III/Athlon with 700 MHz.
- 256 MB RAM
- up to 400 MB free space on your hard disk
- A sound card compatible with Windows XP.

The audio engine in ABSYNTH has been designed to make optimum use of the available computing power in the CPU. The powerful FPUs integrated in modern CPUs are best suited to carrying out the complex computations of real-time synthesis. We recommend the following high-performance processors for using ABSYNTH: Pentium III or 4 with 1.2 GHz or faster, Athlon XP with 1.2 GHz or faster. We also recommend that you use a large amount of RAM (512 MB or more) that is optimally matched to the architecture of your processor.

Software

- Windows XP

Software Installation

- Insert the ABSYNTH CD into the CD-ROM drive.
- Use the Windows Explorer to view the contents of the CD.
- Start the installation by double-clicking Absynth Setup.exe.
- The setup program will suggest C:\Program Files\Native Instruments\Absynth3 as the path for the destination folder. You may also choose another folder if you wish.
Installed Folders, Files, and Links

The setup program creates a new folder called Absynth 3\ in the installation directory (Program Files\Native Instruments). This folder contains the files required to operate the software.

If you do not choose a different program group during the installation, links to ABSYNTH and a ReadMe file are added to the Start menu under Programs ⇒ Native Instruments.

VST plug-in Installation

- Insert the Installation CD into the CD drive.
- Use the Windows Explorer to view the contents of the CD. To start, double-click the Absynth 3 Setup.exe file.
- When the choice is given by the installer, select VST plug-in from the list of components to install.
- You can now choose to automatically search for the VST plug-in folder or manually select the VST plug-in folder of your choice. Please select the option that best suits your installation requirements.

Note: If more than one host program for VST 2.0 plug-ins is installed on your computer, the installer lets you install to multiple VST-folders by shift-clicking them. If you decide to install them at a later date, simply copy the “Absynth 3 VST.dll” file into the VST plug-ins folders of these programs. Windows: If the VST plug-in files are not visible in the Windows Explorer, select the Show All Files option. This option is located in the Explorer menu View ⇒ Folder Options... on the View tab below Hidden Files. Optionally, you can set up your programs so that they all use the same VST plug-ins folder.

DXi 2 plug-in Setup

DXi 2 is a plug-in interface for software synthesizers and instruments based on Microsoft DXi technology. Sonar from Cakewalk and Fruity Loops are the most well known host sequencers that support DXi.
Installation

- Insert the Installation CD into the CD drive of your computer.
- Use the Windows Explorer to view the contents of the CD and double-click the Absynth 3 Setup.exe file to start the installation.
- Continue the ABSYNTH installation until you come to the Choose plug-ins page. Tick the checkbox DXi plug-in.

The installation program copies the ABSYNTH plug-in to your hard disk and registers it as a DXi 2 plug-in for use in DXi 2-compatible host programs. After the installation, ABSYNTH appears as a plug-in in the host program.
Installation under MacOS X

System Requirements and Recommendations
To use the ABSYNTH software, you need a computer with the following minimum specifications:

Hardware
- Apple PowerMac G3 500MHz or faster (OS X)
- 512 MB RAM (OS X)
- Audio interface compatible with Core Audio
- CoreMIDI compatible MIDI interface for connecting a MIDI keyboard or an external sequencer (only for the stand-alone version)
- up to 400 MB free space for the library.

The audio engine in ABSYNTH has been designed to make optimum use of the available computing power in the CPU. The parallel data processing expansions and powerful FPUs integrated in modern CPUs are best suited to carrying out the complex computations of real-time synthesis. ABSYNTH makes extensive use of these expansions in order to achieve optimum performance. As a minimum requirement, we recommend using a G4 1.0 GHz or faster with 512 MB RAM.

Software
MacOS 10.2.6

Installing Absynth 3 OS X
- Insert the Installation CD into the CD drive of your computer.
- Double-click the installation program Install Absynth 3 to start it.
- The start screen appears first. After clicking Continue and confirming the license agreement, a dialog opens where you can select the installation location and the destination folder.
The installation program suggests a path for the ABSYNTH folder; if you do not select a different destination, the ABSYNTH folder is created on the first hard disk. You can choose between Easy Install, where both the stand-alone and plug-in versions are installed, or Custom Install, where you can select which versions you want to install.

MacOS Audio Unit plug-in Installation
- Launch the ABSYNTH Installer from the CD
- Select the Custom installation type.
- Select only Audio Unit from the list of components to install.

Mac/Windows RTAS plug-in installation
- Launch the ABSYNTH Installer from the CD
- Select the Custom installation type.
- Select only RTAS from the list of components to install.
Audio Interfaces

Audio interfaces, which include software routines called drivers, allow ABSYNTH (and other programs you have installed, if present) to communicate with your computer's audio hardware. This section describes how to use various audio interfaces with ABSYNTH.

There are two main ways to implement ABSYNTH:

- As a "stand-alone" device that requires no host software. ABSYNTH's audio and MIDI connections interact directly with your computer's audio/MIDI hardware interface.
- As a plug-in that works in conjunction with a "host" program, such as sequencing or hard disk recording software. In this case, the host program interacts directly with the computer's hardware interface. ABSYNTH connects to the host program via "virtual patch cords." ABSYNTH's audio outputs appear as signals in the host's mixer, and the host passes MIDI data to ABSYNTH.

We'll describe each mode in detail, but first let's look at the various interface drivers and plug-in formats used by different operating systems and programs.

Stand-alone Application

ABSYNTH works in stand-alone mode with ASIO, MME, DirectSound, and Core Audio. The ABSYNTH/computer combination acts as an instrument, similar to a hardware digital synthesizer. For example, you can connect MIDI drum pads to your interface's MIDI input and trigger ABSYNTH's sounds, then run its outputs to an amplification system - instant electronic drums.

<table>
<thead>
<tr>
<th>Interface/driver</th>
<th>Windows</th>
<th>MacOS X</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIO 2.0</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>DirectSound</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>MME</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Core Audio</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>
Plug-In

Used as a plug-in, ABSYNTH is not a stand-alone program but rather a program “module” that can be integrated into a “host” program such as a sequencer. plug-in mode allows you to integrate it seamlessly with the sequencer. Furthermore, it has many other uses as a plug-in:

- MIDI sequencing of ABSYNTH and audio mix-down of the MIDI tracks within a single program
- Comfortable automation of ABSYNTH parameters in the sequencer
- Further processing of ABSYNTH signals using additional plug-ins
- Sample-accurate timing with MIDI controllers (when used as VST 2.0 plug-in)
- Restoring of all plug-in settings when the host document (such as a song file of the sequencer) is loaded
- Integration with other instruments into a “virtual studio”

The shortcuts / key commands do not work in sequencers. This is due to the fact that the host capture keys for themselves and do not pass them on the the plug-in.

This table provides you with an overview of which interfaces are supported by which host programs:

<table>
<thead>
<tr>
<th>Interface/pliote</th>
<th>Programmes hôtes</th>
<th>Windows</th>
<th>Mac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug-in VST 2.0</td>
<td>Cubase, Nuendo</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Cakewalk DXi</td>
<td>Sonar</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Audio Units</td>
<td>Logic 6.x</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>RTAS</td>
<td>Pro Tools 6.x, LE</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
Overview of Operating Systems Interfaces and plug-ins

The interfaces described below are effectively different ways in which ABSYNTH can communicate with your sound card. The interfaces that are available on your computer depend on the sound card you are using as well as your computer platform (Windows or MacOS).

ASIO ("Audio Streaming Input Output") is a sound card driver architecture developed by Steinberg. ASIO is available for MacOS and Windows computers. It offers low latency and supports multichannel audio cards. With its high performance and low latency, the ASIO driver interface is highly recommendable.

DirectSound is an interface developed by Microsoft and is a component of DirectX 5.0 or higher for Windows 98/ME/2000/XP. Whether or not DirectX works well depends on the sound card you are using. If the audio buffer size that you set is too small with DirectSound, glitches and clicks may occur in the audio.

Important: The interfaces DirectSound and MME are not recommended. These have extremely high latencies.

MME is the standard “Wave” driver in Windows. Most sound cards support this interface and work with it quite well. However, MME is even less suitable than DirectSound for real-time applications. This is noticeable by a comparatively high latency.

DXI 2 is a plug-in interface for software synthesizers and instruments based on Microsoft DXi technology. Sonar from Cakewalk and Fruity Loops are the most well known host sequencers that support DXi.

VST is the plug-in format of the company Steinberg. It is a cross platform format and can be used in many hosts.

Core Audio is a new audio interface available with MacOS X that allows you to use external audio hardware as well as the integrated audio output of the Mac.

Audio Units is an OS X plug-in format developed by Apple. Audio Units plug-ins work similar like VST plug-ins.

RTAS is based on an interface protocol from DigiDesign that allows you to use plug-ins with ProTools (or other software that is compatible with DigiDesign). RTAS plug-ins function independently from additional TDM
hardware and are nonetheless able to offer the widest range of features. In this case, the host processor alone performs all of the computations for the plug-in.
Absynth 3 as Standalone

When used as a plug-in, the host program has already set up its audio and MIDI connections, and ABSYNTH simply “plugs in” to these. However, with stand-alone operation ABSYNTH communicates directly with your audio interface. It’s therefore necessary to specify audio and MIDI settings, as well as the preferred driver protocol (of course, plug-in format is not an issue).

Setup for Mac and Windows machines is essentially identical, except where indicated. Note that if you change your audio interface, you will almost certainly need to re-adjust these settings.

Call up the Audio + MIDI Settings setup dialog from the Setup menu. You’ll see three tabs for SoundCard, Routing (audio output patching), and MIDI.

Soundcard (Audio Interface)

![Audio + MIDI Settings dialog]

Interface: Choose the fastest interface protocol supported by your interface, which will be ASIO or Core Audio. For Windows, you can also use DirectSound and Multimedia (also called MME), but expect a significant delay between the time you play a note and the time you hear it.
Windows only: Avoid using any drivers listed as "emulated," as they provide poorer performance than other drivers. For example, although DirectSound drivers generally outperform MME drivers, MME drivers will outperform emulated DirectSound drivers.

Sample rate: The drop-down menu will display compatible sample rates for your audio interface. 44.1kHz is the same sample rate used for CDs, and is the most "universal" choice. However, some audio interfaces offer 48kHz and 96kHz (ABSYNTH accepts up to 96kHz sample rates). These higher rates stress your computer more, but offer somewhat better high frequency response. If you are using ABSYNTH standalone, choose whichever rate you prefer. When used as a plug-in with a host program (e.g., Cubase, Digital Performer, Logic, Sonar, etc.), the host will determine the sample rate.

Output Device: Use ASIO written specifically for your audio interface (not "ASIO DirectX" or "ASIO Multimedia," unless no other choices are available), or for the Mac, Core Audio.

Output Latency: This field displays the output latency. For some drivers you can adjust the latency individually using a fader.

Adjust latency for the fastest possible setting that gives consistent audio performance. The CPU may not be able to keep up with fast settings, resulting in possible crackles or pops in the audio. Slower settings will give more consistent audio performance, but the amount of delay may be musically unsatisfying.

Experiment with the latency setting until you find the best compromise between consistent audio performance and fast response. A quick way to adjust latency is as follows:

- Select any drum kit and play it while moving the Latency slider.
- Move the Latency slider to the left until you start to hear clicks in the audio output.
- Now move the slider to the right until the clicks disappear. This is the optimum setting.
Routing

Using the drop-down menu, Absynth’s Output 2 is being assigned to an output from a multi-output sound card.

If your sound card offers multiple inputs and outputs, you can choose which ones connect to ABSYNTH 3. Click on Inputs to choose the desired inputs from the drop-down menus, and click on Outputs to select the outputs, also from drop-down menus. Note that the right and left channels are independent and can be assigned to any inputs/outputs – not just stereo pairs – as well as disconnected from audio ins and outs.

ABSYNTH provides up to 8 monophonic outs. Using all of these in stand-alone mode requires an audio interface with eight output channels.

However, it is not necessary to have this many channels. For example, if a notebook computer has built-in audio and offers only a single stereo output (two channels), you can assign all the ABSYNTH sounds to the stereo output.

Each drop-down list shows what outputs are available from the driver/audio interface selected under the Interface tab. Assign each ABSYNTH "software" audio out (Channel 1/2 Left, Channel 1/2 Right, Channel 3/4 Left, Channel 3/4 Right, Channel 5, Channel 6, Channel 7, and Channel 8) to the desired hardware output.
Windows only: The audio interface’s overall level may be determined by a mixer applet included with your interface hardware, or the built-in Windows mixer. If you encounter excessively low or high levels, please check the Windows volume control by going Start > Programs > Accessories > Entertainment > Volume Control. Then check the Wave volume slider, and adjust its level as needed.

MIDI

If your MIDI interface offers multiple ins and outs, you can choose which one connects to ABSYNTH. When you click on the MIDI tab you’ll see a list of MIDI I/O. Initially, each one will be Off. This field is a toggle – click on Off to turn an input or output On, click on On to turn an input or output Off.

- If you enable more than one input, they will be merged.
Absynth 3 as Plug-In

VST 2.0 plug-in

In addition to the stand-alone version, ABSYNTH can also be used as a VST Audio Effect plug-in. The advantages of the VST 2.0 format allow us to provide you with a powerful plug-in.

For more information on the VST 2.0 format, refer to the user guide provided with your VST host program.

Using the Absynth plug-in in Cubase SX 3

- Launch Cubase, go to the Devices menu option and select the VST Instruments menu option or press F11 on your keyboard.
- A window showing the instrument rack appears. Click on an empty slot and choose ABSYNTH from the available list of instrument plug-ins.
- The plug-in will now appear in your list and automatically be turned on. It will also create a set of audio channels in your VST mixer that will be used for mixdown within your project. This will allow you to mix, pan, and process ABSYNTH’s output just like any other existing audio track in your Cubase song.
- Click on the Edit button to call up the ABSYNTH interface. Here you can control and edit all the features and functions that ABSYNTH has to offer.
- Now go to the "Project" page and add a MIDI track (if you do not have one already created).
- Go to the Output parameter section for this MIDI Track and click on the field. This will create a list of available MIDI out ports to assign to this MIDI track. Choose Absynth from the list.
Note: If ABSYNTH does not appear in the list of available VST instruments inside your VST 2 host application, then it is not installed correctly. Please refer to the previous section on installing the plug-in for both Windows and Mac platforms for more assistance on setting this up.

After having loaded an Instrument from the library you should be able to trigger it via MIDI using a keyboard controller. ABSYNTH's sound will generate through the VST mixer and directly to your sound card. If the plug-in does not receive MIDI or generate audio, then make sure to check the following areas:

- Make sure "MIDI thru" is enabled in Cubase.
- The MIDI channel of your MIDI track must correspond to the receive channel of the loaded instrument.
- Make sure that you have properly configured your sound card for use with Cubase.

(please refer to your Cubase manual for more information)

Using the Absynth plug-in in Nuendo 2.0

- Launch an empty or current project in Nuendo.
- Click on the Devices menu and choose VST instruments from the menu options (or press F11 on your keyboard).
- A window showing the instrument rack appears. Click on an empty slot and choose Absynth 3 VST from the available list of installed plug-ins.

- The plug-in will now appear in your list and automatically be turned on. It will also create a set of audio channels in your VST mixer that will be used for mixdown within your project. This will allow you to mix, pan, and process ABSYNTH's output just like any other existing audio track in your Nuendo project.
- Click on the Edit button to call up the ABSYNTH interface. Here you can control and edit all the features and functions that ABSYNTH has to offer.
• Now go to the *Project Editor* page and create a MIDI track (if you do not have one already created).

• Go to the *Output* parameter section for this MIDI Track and click on the field. This will create a list of available MIDI out ports to assign to this MIDI track. Choose *Absynth 3 VST* from the list. Also make sure you assign the MIDI input port to correspond to whatever MIDI controller your are using.

• Record enable the MIDI track.

Note: If ABSYNTH does not appear in the list of available VST instruments inside your VST 2 host application, then it is not installed correctly. Please refer to the previous section on installing the plug-in for both Windows and Mac platforms for more assistance on setting this up.

After having loaded an Instrument from the library you should be able to trigger it via MIDI using a keyboard controller. ABSYNTH’s sound will generate through the VST mixer and directly to your sound card. If the plug-in does not receive MIDI or generate audio, then make sure to check the following two areas:

• Make sure "MIDI thru" is enabled in Nuendo.

• The MIDI channel of your MIDI track must correspond to the receive channel of the loaded instrument.

• Make sure that you have properly configured your sound card for use with Nuendo.

(please refer to your Nuendo manual for more information).

Using the Absynth plug-in in Logic 6.x and 5.x

• Launch Logic and create an audio instrument track or set an existing audio or MIDI track to an audio instrument track by clicking on it, holding down the mouse button and choose *Audio* ➔ *Audio Instrument ➔ Inst 1*.
• Double click the audio instrument track to open the environment window. Logic scrolls automatically to the first instrument bus in the Logic mixer.

• Choose the ABSYNTH Audio Unit plug-in in the appropriate insert slot of the instrument mixer bus, either in the arrange or mixer window. Then click onto the insert slot, hold down the mouse button and choose Stereo ➔ Audio Units ➔ Native Instruments ➔ Absynth 3. (ABSYNTH is also available as a multi-channel insert)

• The plug-in now appears in the instrument slot and is ready to use. The instrument mixer channel will allow you to mix, pan, and process ABSYNTH's output just like any other existing audio track in Logic.

• If the ABSYNTH interface is not already open, double click on the mixer's ABSYNTH slot to call up the ABSYNTH interface. Here you can control and edit all the features and functions that ABSYNTH has to offer.

Note: If ABSYNTH does not appear in the list of available AU instruments inside your AU host application, then it is not installed correctly. Please refer to the previous section on installing the plug-in for the Mac platform for more assistance on setting this up.

After having loaded an Instrument from the library you should be able to trigger it via MIDI using a keyboard controller. ABSYNTH's sound will generate through the mixer and directly to your sound card. If the plug-in does not receive MIDI or generate audio, then make sure to check the following two areas:

• Make sure the Inst track is selected in the Arrange window.

• The MIDI channel of your MIDI track must correspond to the receive channel of the loaded instrument.

• Make sure that you have properly configured your sound card for use with Logic.
Using the Absynth Audio Units plug-in in Digital Performer 4.1 (or higher)

- Launch Digital Performer and create an instrument track by selecting Project ➔ Add Track ➔ Instrument Track ➔ Absynth 3.

- Create a MIDI track by selecting Project ➔ Add Track ➔ Midi Track. In Digital Performer’s track overview window (or in the sequence editor window) assign the output of this MIDI track to “Absynth 3-1” and a MIDI channel. If you instantiate further ABSYNTH Plug-Ins they will be named “Absynth 3-2”, “Absynth 3-3” etc.

- The plug-in is now ready to use. The mixer of Digital Performer will allow you to mix, pan, and process ABSYNTH’s output just like any other existing audio track.

- To play ABSYNTH with your keyboard, record enable the MIDI track which you have routed to ABSYNTH and make sure Midi Patch Through is enabled in the Studio menu of Digital Performer.

- Double click on the ABSYNTH slot in Digital Performers mixing board to call up the ABSYNTH interface. Here you can control and edit all the features and functions that ABSYNTH has to offer.
Note: If ABSYNTH does not appear in the list of available Audio Unit plug-ins inside your Audio Units host application, then it is not installed correctly. Please refer to the previous section on installing the plug-in for Mac platforms for more assistance on setting this up.

After having loaded an Instrument from the library you should be able to trigger it via MIDI using a keyboard controller. ABSYNTH’s sound will generate through Digital Performers mixer and directly to your sound card. If the plug-in does not receive MIDI or generate audio, then make sure to check the following two areas:

- Make sure **Midi Patch Through** is enabled in the Studio menu of Digital Performer.
- The MIDI channel of your MIDI track must correspond to the receive channel of the loaded instrument.
- Make sure that the instruments track output is correctly set.
- Make sure that you have properly configured your sound card for use with Digital Performer.

(please refer to your Digital Performer manual for more information).

Using Absynth RTAS with Pro Tools 6.x under Mac and Windows

The RTAS format is an interface protocol for Mac OS and Windows that allows you to use plug-ins with ProTools independently from additional TDM hardware, while nonetheless offering the widest range of features. In this case, the host processor alone performs all of the computations for the plug-in.

- Launch Pro Tools
- Create a new **AUX** track **File ⇩ New Track**
- Create a new **MIDI** track the same way
- Locate the channel mixer **Windows ⇩ Show mix**
- The dark grey box at the topmost section of the AUX channel is the RTAS insert section. Click on the first empty slot to show all available RTAS plug-ins.
Choose Absynth from the menu

Now locate the MIDI channel you just created
In the output slot, choose ABSYNTH and the appropriate channel

After record enabling the midi track, you will be able to play ABSYNTH with your midi keyboard.
(Please refer to your Pro Tools manual for more information on how to record ABSYNTH’s output).

DXi 2 Plug-in

Using Absynth in Sonar

DXi 2 is a plug-in interface for software synthesizers and instruments based on Microsoft’s DirectX technology.

Using the Absynth DXi 2 plug-in in Sonar

• Launch Sonar
• In the synth rack choose Absynth DXi 2.

Loading the Kompakt DXi 2 plug-in in the synth rack

• Route a MIDI track to the DXi 2-Plug-in by selecting Absynth in the Out drop down list.

Assign a MIDI track to the Kompakt-DXi-Plug-in

Using Absynth 3 in Garage Band

• Launch Garage Band
• Press the “+” button to create a new “Software Instrument” Track. From here you can choose the icon you wish to use.
• Double-click the instrument track icon or press the “I” icon to get the Track Info.
• From the Info window expand the Details triangle underneath the Instrument icon to expose the track settings.
• From the Generator drop-down menu, choose ABSYNTH from among Audio Unit plug-ins.

• Clicking on the pencil icon next to the “Manual” drop-down menu will open the ABSYNTH interface for editing.
• ABSYNTH can now be played using an external midi keyboard or auditioned by clicking on the preferred cells.
Main window

The Navigation Bar runs along the top of the main ABSYNTH window, and all other ABSYNTH windows.

In addition to providing buttons for switching between the different windows (MAIN, PATCH, WAVE, EFFECT, ENV, LFO and MIDI), the Navigation Bar also features three popup menus (File, Edit and Setup), and the selected preset name field.

File (popup)

The File popup duplicates many of the functions found on the main application File menu.

Edit (popup)

As above, but for the Edit menu.
Setup (popup)

Output Setup…

Opens a dialog in which you can configure ABSYNTH’s output mode. The configuration options are Stereo, Stereo Wide, Surround 4.1 and 5.1, Front, Quad, Music, Pentaphonic, Hexaphonic, Cinema, Heptaphonic and Octophonic. The ".1" stands for the LFE (Low Frequency Effects) or Subwoofer channel. It can be turned on and off for each configuration and the frequency and volume of this channel can be adjusted to conform with the loudspeaker setup used. List of available configurations:

- **2.1 Stereo**: The default configuration is standard, two-channel stereo sound. In this configuration the speakers are placed at 45º and -45º.
- **2.1 Stereo Wide**: This configuration is slightly different from 2.1 Stereo. It places the two front loudspeakers at 90º and -90º and therefore makes a wider stereo image.
- **3.1 Surround (LRS)**: This configuration refers to analog matrix surround, often called Dolby Surround™ (home) or Dolby Stereo™ (cinema), but without a center channel. It has one surround center channel and left and right front channels.
- **3.1 Front (LCR)**: This configuration adds one center front channel to left and right in order to allow a better front-separation.
- **4.1 Surround (LCRS)**: This configuration adds the center channel to the 3.1 Surround configuration and is often called Dolby Surround Pro Logic™.
- **4.1 Quad**: four-channel 'quadraphonic' sound, comparable to the systems that competed for popularity in consumer audio in the 1970s. All four speakers are placed symmetrically in the corners of a square.
- **5.1 Music**: five-channel 'surround sound', comparable to the systems used in cinema and high-end home entertainment systems, often referred to as Dolby Digital™ or DTS™. It offers 3 front channels (left, center, right) and two surround channels (left-surround, right-surround).
- **5.1 Pentaphonic**: five-channel 'surround sound', with 5 channels symmetrically spread in a circle.
- **6.1 Music**: 5.1 Music configuration, but with a surround-center channel added. This configuration is used in Dolby Digital EX™ or DTS - ES™.

Absynth 3
English – 36
6.1 Hexaphonic: six-channel surround sound with 6 channels spread symmetrically in a circle.

7.1 Cinema: seven-channel surround sound, often used for movies. Well-known surround systems are SDDS™ and IMAX™. This configuration adds two front channels (center-left, center-right) to the "5.1 Music" configuration.

7.1 Music: seven-channel surround sound, similar to the 6.1 Music, but with the surround-center channel split into surround-center-left and surround-center-right.

7.1 Heptaphonic: seven-channel surround sound with 7 channels spread symmetrically in a circle.

8.0 Octaphonic: eight-channel surround sound with 7 channels spread symmetrically in a circle.

For each of the three configurations you can choose how each of the available audio outputs will be used (see Routing under Setup → Audio and Midi settings...).

Surround panning controls are available in the Patch window when surround mode is activated.

Note: in order to make best use of Quad or Surround 5.1 you'll need an audio interface with four (quadrhaponic) or more output channels available. You'll also need to give some thought to speaker placement. Quad assumes two pairs of speakers: one in front of the listener, and one behind. Surround 5.1 assumes a stereo pair with a mono middle speaker in front, and another pair behind.

Enable ProgramChange
As per Enable ProgramChange on the main application Setup menu.

Auto Balance Channel
As per Auto Balance Channel on the main application Setup menu.

Midi Channel
Opens a popup sub-menu from which you can select the number of the MIDI Channel you want ABSYNTH to ‘listen’ on.
Selected preset name field

Displays the name of the currently-selected preset. Click to edit its name.

Panic button

The panic button, marked ‘!', instantly reinitialises all internal DSP parameters. If something strange, loud or unpleasant happens, don't panic: click this.

Preset list

A list of all the presets in the file. The name of the preset is preceded by it's program change number. To select a preset, click on its name in the list or send the corresponding program change number via MIDI (if Enable ProgramChange is checked in the Setup menu). It may take a second or two for the preset to load on slower machines. Changing presets while other audio programs are running may result in dropouts or clicks.

Store

Store changes made to the current preset to it's current program number. If you change presets without clicking store, the changes will not be saved. However, you can recall the changes to unstored edits using Edits..., described below.

Store to...

Store the current preset to any program number. This will open a window with a list of all presets. Select the destination preset in this list, then click the ‘Store’ button, or double-click on the destination preset.

You can use Store to... to make multiple copies of a preset, as well as for changing the order of the preset list.
Edits…

This popup lists the last 10 edited presets that were not stored. Select an edit to load it into the current preset.

Keyboard

Click on the keyboard to play a note. The note will sound as long as the mouse is down and the cursor is over the note. Click and hold = play, release = stop.

Hold

Hold changes the way the keyboard responds to the mouse. With hold on, the note will continue to sound after the mouse button is released until another note is clicked on, i.e. click = play, reclick = stop.

Sustain

When the sustain button is on, all played notes will continue to sound after the mouse button is released, just like a real sustain pedal! This makes it possible to play chords with the keyboard. The sustain button also affects notes coming in via MIDI. This is easier than putting a brick on your sustain pedal if you want to hold notes for a long time.

When a MIDI sustain pedal message (controller #64) is received, the sustain button turns on or off.

MIDI controller sliders

Each MIDI continuous controller that is assigned to a parameter in the current preset will have a MIDI controller slider. For example, if MIDI controller #1 is set to adjust the frequency of a filter, a slider named ‘ctl1’ will appear in the keyboard window. Different presets may have different controller assignments. If a preset has 10 controllers assigned, 10 controller sliders will appear.

This makes it easy to see what controllers a preset may respond to. See the sections on the MIDI and LFO windows for more on controller assignment.
MIDI controller sliders can be dragged to change the controller value. They also move when midi controller data is received, making them useful to see how your midi controller (keyboard, mixer) is set up.

Poly

Polyphony. The maximum number of voices the selected preset can play. Setting this to 1 puts ABSYNTH in a legato monophonic mode. The maximum poly setting is 64.

Polyphony and CPU load

The number of voices you can play for a given preset depends on the complexity of the patch and the speed of your computer. ABSYNTH uses dynamic voice allocation, so voices which are not sounding are not processed. As you play more notes you will notice the CPU meter rise. If the CPU overloads or the graphic interface starts getting sluggish, just release a few notes.

If a soundcard is installed and the CPU overloads, the soundcard’s driver might lose its marbles. This is easily remedied by clicking the reset ‘!’ button, selecting a preset or turning a module on or off. This is not a problem if a soundcard is not installed.

Transpose

Transposes the pitch of the selected preset in ‘floating point’ semitones, i.e. a setting of 1.5 equals one semitone plus a quarter tone (half a semitone). Tuning resolution is 1/1000th of a semitone.

Tuning

Select the tuning used by the current preset. You can choose from a number of preset tunings, or you can create your own custom tunings.

dB

Adjust the selected preset's output level in decibels.

Pan

Left/right pan of the selected preset. 0.0 = full left, 0.5 = center and 1.0 = full right.
The Patch window is where you lay out the components that make up a particular preset, and generate a particular sound.

In the Patch window you can switch ABSYNTH’s various modules on and off individually, and modify the parameters for each module.

To toggle a module on or off, simply click on its name, on the left-hand side of the module.

Modules

There are 12 modules in ABSYNTH:

- 3 Oscils
- 4 Filters
- 3 Mods
- 1 Waveshape
- 1 Effect.
The modules are arranged into three independent channels, which are
mixed and fed into a master channel. The modules are the same in
each of the three independent channels, and are arranged Oscil ⇒ Filter ⇒ Mod. The modules in the master channel are arranged Wave-
shape ⇒ Filter ⇒ Effect.

The tubes between modules (also known as ‘the plumbing’) represent the
signal path. The signal starts at the top, with the three Oscils, and ends
after the effect module, in the bottom right corner.

The three level sliders control the output level of each independent
channel. When the menu item Setup ⇒ Auto balance channels is
checked, the sliders remain balanced, i.e. lowering one will raise the
other two. The menu item Edit ⇒ Balance levels will set all three sliders
to the same level.

Individual modules are sometimes referred to by name and channel: ‘os-
cil 1’, ‘mod 3’, ‘master filter’, etc., especially in the Envelope and LFO
windows.

Oscil module

Oscil is the only sound-generating module in ABSYNTH. All of the other
modules modify sound originating from the Oscils. If none of the three
Oscils is on, no sound will be produced and none of the other modules
can be switched on. Similarly, if the Oscil at the top of a channel is off,
none of the other modules in the channel can be switched on.

The Mode popup is used to select the Oscil mode.

In ABSYNTH, Oscil has eight different modes, producing signals in three
distinct ways:

- Wavetable synthesis (Single, Double, FM, Ringmod and Fractalize
 modes).
- Sampling (Sample and Granular modes).
- Routing external audio signals (Audio In mode).

Wavetable synthesis modes

In Single, Double, FM, Ringmod and Fractalize modes, Oscil performs wavetable synthesis, based on a single-cycle wavetable.

Single mode

A single, ‘Main’ oscillator is active.

Double mode

A pair of oscillators (the ‘Main’ oscillator plus a ‘Mod’ oscillator) is active, and their outputs are mixed. The Mod oscillator’s parameters are accessed by clicking the Mod tab, and include balance, Wave, frequency and phase.

Note: one Oscil module in Double mode is more CPU efficient than two Oscils modules in Single mode.

FM mode

Frequency Modulation. The Mod oscillator modulates the frequency of the Main oscillator. The Mod oscillator’s parameters are fm index (or modulation depth), Wave, frequency and phase offset.

Frequency Modulation was discovered by John Chowning in the late 60's, and made popular in the 80's with Yamaha's DX7 synthesizer. Much has been written about FM synthesis; an exhaustive explanation is unfortunately beyond the scope of this manual.
Ringmod mode

Ring Modulation and Amplitude Modulation. The output of the **Main** and **Mod** oscillators are multiplied together. The **Mod** parameters include **balance**, **Wave** and frequency.

Frequency can be specified in semi-tones (Trans), as a **Ratio**, in Hz, or by MIDI note number (Note). For that ‘classic’ ring modulation sound, set one of the oscillators to Hz or Note. (The different ‘frequency modes’ are discussed in more detail later.)

The Wave popup

In all wavetable synthesis modes, the **Wave** popup selects the waveform used by the oscillator(s). It can also be used to create new waveforms.

Currently **Wave** popups are organised into two submenus: **factory** contains all of ABSYNTH's built-in waveforms; **user** contains any user-created waveforms.

Wave ⇒ **user** ⇒ **new**... allocates a new waveform and opens the waveform editor. Each preset can have up to 8 waveforms allocated. For more on editing waveforms, see the section on the Wave window.

Main / Mod tabs

As we’ve seen, an Oscil module usually features both **Main** and **Mod** tabs, the **Mod** tab providing access to various mode-dependent parameters. (Only **Single** and **Audio In** mode, discussed later, lacks a Mod tab.)

Uni tab

New in ABSYNTH, **Single**, **Double**, **FM** and **Ringmod** modes also feature a **Uni** (‘unison’) tab, with three parameters:

- **num voices**: the number of voices produced per note (the maximum is 8).
- **trans**: the detune amount in semi-tones (only available if **num voices** is greater than 1).
• **rand trans**: the possible range of random detuning (up or down) in semi-tones.

You can use Uni to quickly stack up voices and create fuller, richer sounds. Each time you increase **num voices**, a new voice is added and mixed into the Oscil's output.

The **trans** setting determines the intervals between the original ‘root’ note and the pitches of the additional voices. ‘Even-numbered’ additional voices are transposed downwards, ‘odd-numbered’ additional voices are transposed upwards.

So, for example, if **num voices** is set to 3 and **trans** is set to 1, each note will be accompanied by one voice transposed a semi-tone down, and one voice transposed a semi-tone up from the original pitch.

If **num voices** is increased to 4, a new (‘even-numbered’) voice will be added, one semi-tone **below the last even-numbered voice** (i.e. two semi-tones below the root note). If num voices is increased again to 5, a new (‘odd-numbered’) voice will be added one semi-tone **above the last odd-numbered voice**.

The **rand trans** option causes random voice detuning on each successive note. Used subtly, with **num voices** set low, **rand trans** can create an effect of loose or imprecise intonation (perhaps to mimic a fretless stringed instrument, or provide natural-sounding variations in ‘unpitched’ percussion sounds). More drastic settings can result in completely unpredictable atonal note clusters, among other things!

Fractalize mode

Also new in ABSYNTH, **Fractalize** is the last of the wavetable synthesis modes. Experienced ABSYNTH users will recognise this as a real-time implementation of the Fractalize function from the waveform editor in the Wave window (it works in much the same way).

The **Mod** tab parameters are:

• **iterations**: higher values tend to produce brighter, more complex sounds. (They also increase the CPU load!)

• **amount**: the amount of fractalization. When set to ‘0’ the sound of the original waveform is unaltered.
displacement: this is the most dynamic and interesting parameter. It’s effect is difficult to describe - but easy to hear. The Fractalize function in the wave window may help you to visualise what’s going on.

Fractalize mode also has its own Uni tab parameters: trans and rand trans. These work the same way as in Single, Double, FM and Ringmod modes.

Note however that Fractalize mode has no num voices parameter (iterations fulfils a broadly comparable role).

Tip: Fractalize works especially well with waveforms featuring sparse and strong harmonics - tending to generate clusters of new harmonics around the original harmonics. With the right kind of waveform this can produce interesting formant-like effects. With more harmonically dense waveforms (e.g. saw_real) the effect is less noticeable.

Frequency modes and the frequency number box

By default, the frequency mode popup button is labelled ‘Trans’.

We’ve already seen (in Ringmod mode) that oscillators in the Main or Mod tabs can be set to respond to notes in several different ‘frequency modes’. The same applies to oscillators in any of Oscil’s wavetable synthesis modes.

The available frequency modes are Trans, Ratio, Hz and Note, and these can be selected via the frequency mode popup (labelled Trans by default):

- Trans: transpose by semitones. The frequency number box transposes the pitch of an oscillator in ‘floating-point’ semitones. This allows fine tuning with a precision of 1/1000th of a semitone.
- Ratio: transpose by frequency ratio (i.e. the harmonic series). This mode is particularly useful when working in FM and Ringmod modes.
• **Hz:** fixed pitch in Hertz. The pitch of the oscillator will remain fixed regardless of the note being played. This is very useful in **FM** and **Ringmod** modes. LFOs and pitch bend will not affect the pitch in **Hz** and **Note** modes, however it is possible to control the pitch with an envelope.

• **Note:** fixed pitch by MIDI note number. This has the same effect as **Hz** mode but is sometimes more useful if you want to tune the main oscillator to a specific pitch, i.e. 60.5 = C3 plus one quarter-tone.

Tip: you can switch back and forth between **Hz** and **Note** to perform note to Hertz conversion.

Phase invert

The phase invert button (immediately to the left of the phase/free mode button).

In all of Oscil’s wavetable synthesis modes, the phase invert button can be used to invert the phase of the signal produced by the **Main** oscillator. Note that if another oscillator is set to exactly the same pitch, phase offset and wave, total phase cancellation will occur, which means silence.

Phase / free

In all of Oscil’s wavetable synthesis modes, the **phase number box** can be used to set the initial phase of an oscillator.

Varying the phase of an oscillator will only have an audible effect if another oscillator is switched on. It can be useful, for instance, in **FM** mode, when working with integer carrier/modulator frequency ratios.

Clicking on the **phase** label in the **Main** tab toggles between **phase** and **free** modes.

In **phase** mode, the phase of the oscillator is reset (according to the value in the **phase number box**) with every note-on (provided poly has not been set to 1).

In **free** mode, the phase of the oscillator is not reset.
If only one oscillator is sounding (e.g. in **Single** mode with **Uni** θ **num voices** set to 1) **free** mode will have almost no effect. If **Uni** θ **num voices** is greater than 1, or if there is more than one oscil sounding (e.g. in **Double**, **FM**, or **Ringmod** modes) the sound will be noticeably different with every note.

Anti-aliasing

In **Single** and **Double** modes, oscillators can be **anti-aliased** for a smoother, more ‘analog’ sound. The small ‘staircase/ramp’ button in the upper left of the **Main Oscil** tab turns anti-aliasing on or off. The ‘staircase’ means that antialiasing is **off**, while the ‘ramp’ turns it **on**.

Clicking the small staircase/ramp button in the upper left corner of the Oscil module turns anti-aliasing on or off. A staircase signifies that anti-aliasing is off, and a smooth ramp (pictured) means that it is enabled for that oscillator.

Anti-aliasing makes the most difference in the high ranges. With anti-aliasing off, you'll probably hear what's called ‘foldback’ - a rough digital distortion that can make the high ranges sound ‘gritty’ or ‘harsh’ (two usually - but not always - undesirable characteristics).

By enabling anti-aliasing, this foldback is significantly reduced. Note that an anti-aliased oscillator requires significantly more CPU than a normal one. Therefore, if you can't hear a difference with antialiasing on, it's best to leave it off.

For compatibility, all version 1 ABSYNTH patches are opened with anti-aliasing off. It's even possible to create a patch with anti-aliasing on in some channels, and off in the others!

Note: anti-aliasing is only available in **Single** and **Double** Oscil modes.
Sampling modes

Oscil has two sampling modes: Sample and Granular. These allow ABSYNTH to act as a sampler, playing back sampled sounds loaded from WAV or AIFF format sound files.

Unlike a conventional, ‘workhorse’ sampler, ABSYNTH doesn’t provide the usual key-mapping, velocity-layering and AKAI import functions.

With ABSYNTH, the emphasis is less on the ‘realistic’ playback of sampled instruments, and more on the creative sound design possibilities presented by sample-based synthesis.

Each of the three Oscils can load a sample; three different samples can be loaded in a single preset.

Tip: before experimenting with ABSYNTH’s sampling capabilities, you may first want to load a default patch. To do this select a New bank from the File menu, then open the patch window.

Loading samples

Loading a sample into an Oscil is easy:

- From the Mode popup select either Sample or Granular. A sample name field, initially marked (none), will appear beneath the Mode popup.
- Click on the sample name field to open an ‘Open’ dialog.
- Select a sample to load.

ABSYNTH can read mono or stereo AIFF or WAV files, from 16 to 32 bits, at any sample rate.

Stereo and Mono samples

Stereo samples can be played back in either stereo or mono. Mono samples are always mono. The ‘ring’ or ‘double-ring’ button next to the sample name field toggles mono or stereo playback. A single ‘ring’ denotes mono playback, a ‘double-ring’ means that the sample will play back in stereo.
If you can't switch a sample to stereo, it means that the sample is in mono. By default, ABSYNTH plays back stereo samples in stereo and mono samples in mono. Note that master stereo operation needs to be enabled to hear samples in stereo (see the Panning section for more information).

Sample mode

In Sample mode, the parameters in the Main tab are:

- **frequency mode popup and frequency number box**: these work in much the same way as in the wavetable synthesis modes.
- **start %**: the start time for sample playback, as a percentage of the total sample length.

On the Mod tab is the Play Mode parameter, which provides three options:

- **No Loop**: the sample is played as a 'one-shot' sound, with no looping (for example, a percussion sound).
- **Loop All**: the entire sample is looped (this works best for samples that have been edited in advance to loop 'cleanly').
- **Loop Edit**: two additional parameters are available when Loop Edit is selected: **loopstart** and **loopen**, which allow you to specify the loop start and end positions respectively, in samples.

Granular mode

In Granular mode, the parameters on the Main tab are the same as for Sample mode, and function in the same way. The Mod tab parameters are different.

Granular mode works by dividing the sound up into many small 'grains', with each grain playing a tiny fraction of the sound. In this way, the pitch and time characteristics of the sample can be controlled independently.

In Granular mode, the duration of the sample is constant across the entire range of the keyboard, while the note played determines the pitch.

The Mod tab parameters for Granular mode are:
- **time %**: sets the playback speed. 50% is half speed, while 200% is double-time. When time is set to 0%, the sample is ‘frozen’ in time. When the sample is frozen, adjusting the **sample start** sets the freeze point.

- **dens**: sets the number of grains playing back simultaneously. Can be set from 1 to 8. A low value will produce a thinner sound, while a value of 7 or 8 produces a thick, dense cloud. Note that higher **dens** settings impose a greater CPU load.

- **size**: sets the length of each grain, in samples. Shorter values are good for percussive sounds, while higher values work well for sustained sounds, such as pads or strings. Note that very short values tend to mask the character of the sample and produce a typically granular ‘tearing’ noise. The maximum value is 9999 samples (around 226 milliseconds at a 44.1 KHz sample rate).

- **r time**: sets the randomness of how often the grains play back. 0 means no randomization, while 100 produces playback times that are randomized within the time window, set by **size**.

- **r freq**: randomizes the pitch of the individual grains. 0 means no randomization, while 100 produces completely random pitches.

- **r amp**: randomizes the amplitude (volume) of the individual grains. 0 means no randomization, while 100 produces completely random volumes.

Sample Management

ABSYNTH’s **Consolidate Bank** command (in the **File** menu) makes a copy of every sample used in the bank, and places them in a folder called **Samples**, which will be in the same directory that the bank was saved to.

On the Mac, **ABSYNTH** uses Aliases to reference samples, while direct file paths are used on the PC. If **ABSYNTH** can't find a sample that is referenced in a patch, it will automatically search for it.
Sampling Hints and Tips

Even though ABSYNTH does not support key-mapping (the ability to play back different samples from different zones of the keyboard) or velocity-layering (the ability to play back different samples on the same key at different velocities), you can actually use the note scaling editor in the MIDI window to roughly simulate these functions. You are, however, limited to only three samples - one per oscillator channel.

To have three different samples play back in different ranges of the keyboard, for instance, first load each sample into the individual oscillator modules. Open the note scaling editor, and draw in the approximate key range for oscillator amp 1 (first sample), then proceed to draw in the key range shapes for oscillator amp 2 and 3 (second and third samples).

It will probably take some fine-tuning to obtain an even volume across the entire keyboard range, but using this trick you can play a bass sample in the low ranges, crossfaded with a vocal in the mids, and a flute in the high!

By fading one sound out in volume across the keyboard and fading another in, you can have multiple samples spread across the keyboard.
A new type of envelope was created just for the sampler modes: **Sample Jump**. Using the **Sample Jump** envelope, you can dynamically slice up samples, sync up samples to any tempo, or just have fun. Be sure to read the **Sample Jump** notes in the **Envelope Window** section.

Audio In mode

Audio In mode is also new in ABSYNTH. In **Audio In** mode, Oscil generates no sound of its own, but instead passes externally-connected audio signals directly to its output. This allows 'real world' sounds to be processed and manipulated by ABSYNTH’s other modules in real-time!

Audio In mode is activated by choosing **Audio In** from the Oscil **Mode** popup, and its parameters all appear in the **Main** tab:

- **In**: choose from one of six possible audio inputs, as nominated in the **Routing** tab of the **Audio and Midi settings...** dialog.
- **db**: boost or attenuate the input signal as required. The default is 0db, leaving the level of the input signal unaltered.

As with the sampling modes, the ‘ring/double-ring’ icon can be used to select either a mono or stereo input signal. If mono is selected, only one **In** popup is available. When stereo is selected, a second identical **In** popup appears beneath the first.

Note: external audio signals follow ABSYNTH’s signal path in exactly the same way as internally-generated sounds, and are thus affected by ABSYNTH’s envelopes in just the same way. Consequently you will only be able to hear external audio signals when one or more keys are pressed, and the envelopes are triggered!
Filter module

Mode
Sets the filter mode.

Fourteen different filter types are available:

- **lpf 2 pole**: an analog-modelled 2 pole lowpass resonant filter.
- **lpf 4 pole**: an analog-modelled 4 pole lowpass resonant filter.
- **lpf 8 pole**: an analog-modelled 8 pole lowpass resonant filter.
- **allpass 2**: a 2 pole allpass filter.
- **allpass 4**: a 4 pole allpass filter.
- **allpass 8**: an 8 pole allpass filter.
- **lpf -6dB**: a first-order lowpass filter.
- **lpf -12dB**: a second-order lowpass filter with feedback resonance.
- **lpf -24dB**: a fourth-order lowpass filter with feedback resonance.
- **hpf -6dB**: a first-order highpass filter.
- **hpf -12dB**: a second-order highpass filter with feedback resonance.
- **bpf**: a bandpass resonator with a Q range of 0.2 to 1000.
- **notch**: a band-reject filter with feedback resonance. Bandwidth sets the separation between the high and lowpass sections in octaves.
- **comb**: a comb filter. Feedback range is from -0.99 to 0.99. Modulate it for flanging effects. Setting the frequency low enough will produce a short delay effect.

The number of ‘poles’ of the analog-modelled lowpass filters determines the steepness of the filter curve. This means that the higher-pole filters will cut the frequencies above the cutoff more severely.
Allpass filters are a creative type of filter that can be used for resonant or phasing effects. For allpass filters, the number of poles indicates the number of notches and peaks in the filtered signal's frequency spectrum. With high resonance, the 8-pole allpass can sound remarkably like a bell.

Mono/Poly

![Image of Mono/Poly setting](image1)

The master filter can be set to operate in either mono or poly mode.

This button only appears on the master filter in the bottom row of the Patch window. In **Poly** mode (three little arrows) one filter will be allocated per voice. In **Mono** mode (merged arrow), only one filter will be allocated for all voices.

Mod module

![Image of Mod module](image2)

Mod is a signal processing module, which uses its own internal oscillator to alter or modulate incoming signals. As with *Oscil*'s oscillators, a *Wave* popup can be used to select or create different waveforms for the oscillator.

Note that *Mod*’s oscillator’s output is never heard on its own; instead what you hear is the effect of its interaction with the input signal.
Mod operates in two different modes:

Ringmod mode

Performs ring modulation, very similar to Oscil’s Ringmod mode. The amplitudes of the incoming signal and Mod’s oscillator signal are multiplied together. The Wave popup is used to select or create the oscillator waveform. The balance number box adjusts the balance between the input signal and the modulated signal.

Freq Shift mode

New in ABSYNTH, Freq Shift does frequency shifting. Frequency shifting is quite similar to ring modulation, and can produce similar-sounding results.

Technically speaking, while a ring modulator produces both ‘sum’ and ‘difference’ frequencies, a frequency shifter produces only sum or only difference frequencies.

In practise, this means that Freq Shift tends to produces subtler, more controllable effects than Ringmod.

Freq Shift’s parameters are:

- **+/ - button**: set to + to produce sum frequencies, set to - to produce difference frequencies.
- **Wave popup**: select or create the oscillator waveform.
- A frequency mode popup and numberbox.
- **Feedback**.

Slight detuning (relative to the input frequency) with moderate feedback can produce a constantly rising or falling ‘barberpole’ phasing effect. Very low (e.g. 1 Hz) frequency settings can produce similar effects.

Since there is no interference between sum and difference frequencies, Freq Shift often sounds cleaner with complex input (e.g. samples, saw waveforms) than Ringmod.
Note: frequency shifting is **not** the same thing as pitch shifting. A pitch shifter multiplies the frequencies in a signal by a common factor, preserving the harmonic relationships between them. A frequency shifter **adds** a common factor to the frequencies in a signal, thereby altering (compressing or expanding) the harmonic relationships.

Mono/surround

In mono mode, the mono/surround button is marked with a single dot. In surround mode it shows five dots.

The mono/surround button can be used to toggle between **mono** and **surround** modes. In mono mode, all signals generated in the Patch window are in mono (until they reach the Effect module, which operates in stereo).

When surround mode is activated, each active Patch window channel has its own ‘cross-hair’ control, which can be used either for standard left/right stereo panning, or for more advanced left/right/front/back surround panning.

Tip: surround mode really comes into its own when the pan parameter is modulated by an LFO.
Waveshape module

Waveshaping (non-linear distortion) uses a waveform to distort the input signal. Perhaps the most familiar example of waveshaping is distortion with an electric guitar amplifier or pedal.

Waveshaping is sensitive to the amplitude of the input, therefore the timbre of the sound will vary with the amplitude envelopes and the volume pedal. Waveshaping will also emphasize phasing and detuning effects.

Mono/Poly

In Poly mode (three little arrows, pictured) one waveshaper will be allocated for each voice. In Mono mode (merged arrow), only one waveshaper will be allocated for all voices.

In Poly mode distortion is independent per voice, as if you had a separate guitar amplifier for each string of an electric guitar. In mono mode, playing more than one note will result in the voices ‘interfering’ with each other, much like playing a chord on an electric guitar with distortion.

Hints: Waveshape in mono mode can be used as a simple compressor if the input level is kept low. A touch of waveshaping can really warm up the filters.

- Wave: the waveform determines the timbre of the distortion. In this case the wave is not an oscillator waveform, but instead represents the transfer function used to distort the input signal. Try creating a new waveform and editing it in the Waveform window in spectrum mode.
• **in dB**: input level in decibels. Lowering the input level will generally result in less distortion.
• **out dB**: output level in decibels.
• **phase**: adjusts the phase offset of the waveform. This will change the sound radically.

Effect module

The effect module provides a variety of delay-based effects. Because of the large number of parameters, effects are edited in a separate window. To open the Effect window click the **edit...** button. See the section on the Effect window for details.

More Parameter Control

In ABSYNTH, just about every parameter in the Patch window can be controlled by the envelopes. Resonance, Waveshape phase, Waveshape gain, Effect time, Effect feedback, Effect filter frequency, Effect mix, and Panning can all be controlled by the envelopes.
Wave window

The Wave window allows you to edit waveforms created with one of the Wave popup menus found in oscillators, LFOs and the Waveshaper module. They are used to select the waveform used by the module as well as to create new waveforms. Currently wave popups are organised into two sub-menus: ‘factory’ contains all of ABSYNTH’s built-in waveforms, ‘user’ contains user-created waveforms. Wave ⇒ user ⇒ new ... will allocate a new waveform and open the waveform editor. Each preset can have up to 8 waveforms allocated.

User-created waveforms are only available to the preset in which they were created, they cannot be directly accessed from other presets - although they can, of course, be stored and retrieved via ABSYNTH’s Universal Library functions.

Nearly all of the editing tools and functions listed below work 'live' in real-time. You can play sound, modify the wave at the same time and hear the result immediately.

Wave popup

Select which preset wave to edit. Note: if you want to edit a factory wave, use the Load Wave... function in the Transform popup to copy one of the factory waves to the current preset wave.
Waveform/spectrum

The waveform window has two editing modes: waveform and spectrum. **Waveform** mode allows editing the wave directly in the time domain. **Spectrum** mode allows editing the first 64 harmonics of the waveform in the frequency domain. Note: harmonics above 64 are retained during all spectrum mode operations (some spectrum based editors chop off harmonics beyond the editor’s limit).

Waveform mode

Amplitude/offset sliders (waveform mode)

Adjust the amplitude and offset of the waveform. Double clicking on the offset slider will center the wave around zero.

Line tool (waveform mode)

Draw a waveform using straight lines. The line will be drawn starting at the origin point (the blue triangle at the top of the waveform display). The origin point can be dragged to another position.

When you draw a line past the beginning or end of the waveform, a horizontal line will appear. This line indicates the amplitude of the other end of the waveform. This is useful for matching the amplitude of the beginning and end of the waveform.

Curve tool (waveform mode)

Draw a waveform using half-cosine curves. Otherwise similar to the line tool.
Stretch tool (waveform mode)

When the stretch tool is selected, two yellow triangles will appear above the waveform display. If you drag on the waveform in the space between the triangles, the waveform will be ‘stretched’. Move the triangles to change the boundary zone. Option drag a triangle to move both triangles simultaneously.

Transform popup (waveform mode)

- **Normalize**
 Normalize the amplitude of the waveform.

- **DC offset**
 Ensure that the waveform has equal total energy above and below the center line. This is not the same as centering the waveform with the offset slider.

- **Offset phase…**
 Adjust the phase offset of the waveform.

- **Invert phase**
 Invert the phase of the waveform.

- **Reverse**
 Reverse the waveform in time.

- **Mix**
 Opens a window where you can mix another waveform with the current waveform. You can adjust the following parameters:
 - **Balance** of the two waveforms
 - **Phase invert** and **offset** of the mixed-in waveform.
 - **Frequency ratio** of the mixed-in waveform.

Note: you can use the frequency slider to create chords based on the intervals of the harmonic series. Repeat mix and change the frequency each time to add a new ‘note’ to the chord.
Fractalize

The fractalize function is a unique transformation, and is particularly useful for creating bright, diffuse, organic sounding waves. Parameters include:

- **Number of iterations.** The more iterations the more fine detail is added to the wave.
- **Displacement** adjusts the overall shape of the fractalized wave.
- **Amplitude slope** controls the amount of fractalization. High amplitude settings will produce extremely noisy waveforms.

Tip: Try experimenting with the fractalize parameters while playing on a MIDI keyboard.

Filter

Filter the waveform.

- Use the filter popup to select the filter type.
- The frequency slider sets the filter frequency on a scale of 0.0 to 1.0. Lowpass filtering a wave is the best way to eliminate aliasing.

FM

Perform frequency modulation on the waveform. The current waveform acts as the carrier.

- Use the wave popup to select the modulator wave.
- Modulation index controls the amount of modulation.
- Modulator frequency sets the frequency ratio of the modulator.
- Modulator phase sets the phase of the modulator.
- Carrier frequency sets the ratio of the carrier.

Load Wave

Copy another wave (factory or preset) to the current edit wave.

Extract from AIFF/WAV

Load the first 1024 samples from an AIFF (Mac) or WAV (PC) file as a waveform.

Load Wave from Library

Recall a saved waveform from ABSYNTH’s library.
Save Wave to Library…
Save a waveform to ABSYNTH’s library.

Clear
Silence.

Spectrum mode

In spectrum mode, the waveform window displays the first 64 harmonics of the selected waveform. The top half of the display shows the amplitudes of the harmonics, the bottom half shows the phase. At the bottom of the window, the harmonic number corresponding to the mouse position, the harmonic’s amplitude and phase are displayed.

Note: It’s a common misconception that the phase of a harmonic is not very perceptible. Although phase is a little less perceptible than amplitude, changing the phase of a harmonic in a complex waveform can significantly change the sound.

Note: In case you’re wondering, harmonics higher than 64 remain unaffected by the spectrum editor, i.e. they don’t get chopped off when the wave is resynthesized.
Draw one harmonic tool (spectrum mode)

This tool allows drawing the amplitude and phase of one harmonic per mouse click. Use this for precise drawing.

Draw harmonics tool (spectrum mode)

Use this tool to draw the amplitude and phase of multiple harmonics.

Transform popup (spectrum mode)

- **Invert phase**
 Invert the phase of the harmonics.

- **Shift harmonics**
 Shift the overall shape of the spectrum up or down.

- **Load Wave**
 Copy another wave to the current edit wave.

- **Clear all**
 Set amplitude and phase to zero.

- **Clear amplitude**
 Set amplitude to zero.

- **Clear phase**
 Set phase to zero.
Effect window

Effect button

This button will toggle the effect module in the Patch window on and off. It is equivalent to the effect button in the Patch window.

Mode popup

Sets the effect mode. There are currently five different effect modes.

Multicomb mode (pictured above)

Multicomb provides up to 6 independent delay lines with feedback and a lowpass filter in the feedback loop. Delay time ranges from one sample to 0.74 seconds. Delay time can be modulated by the LFOs and by a MIDI controller. See the sections on LFOs and the Controllers window.

Time (master)

This sets the master time for the six delay lines. The sec/beat button allows you to edit time either as seconds or tempo/beat.

Feedback (master)

Master feedback control. Ranges from 0.0 to 0.999.
Lowpass (master)
Sets the master frequency for the lowpass filters in the six delay lines.

Time %
The delay time for an independent delay is the master time multiplied by this value.

Ctl Sens/invert
Sensitivity to control input of the delay time. An LFO or MIDI controller must be set to control the effect for this to do anything. The invert button reverses the effect of the control input. See the sections on LFO’s and MIDI controllers.

Feedback %
The feedback value for a delay channel is the master feedback multiplied by this value. Ranges from -1.0 to 1.0.

Lowpass %
The lowpass frequency for a delay channel is the master lowpass frequency multiplied by this value.

Gain and pan
Gain of the delay channel in dB. Pan ranges from 0.0 = full left, 0.5 = center and 1.0 = full right.

Pipe mode
Pipe is similar to a simple waveguide. Unlike waveguide-based physical modelling, ABSYNTH’s Pipe mode is not an attempt at a realistic simulation of anything in particular. However, it is useful to think of it as a string or tube.

Imagine Pipe is a string. The string has a speaker connected to it which makes it vibrate (a ‘contact speaker’). The position of the ‘speaker’ along the length of the string is the **input position**.

The string also has two pickups like an electric guitar which are panned left and right. These are the **output positions**. Adjusting the output positions is very much like setting the positions of a stereo pair of microphones.

Absynth 3
English – 68
The length of the string and the two output positions can be modulated by LFOs and a midi controller. This can produce some very nice flanging, pitch shift and rotary speaker effects, especially if the control input is inverted for one of the outputs.

Modulating Pipe’s parameters can be a little tricky. If one of the output positions crosses over the input position a soft thump may result. When modulating the length of pipe, length might cross the input position producing a ‘thumpy’ click. The output positions can cross each other with no problem.

Pipe's graphic display provides an animated view of input and output positions as well as the length. This is very useful for avoiding crossing over the input position.

Tip: modulating both output positions with an LFO with one of the output's ctl sensitivity inverted (i.e. the points move in opposite directions), a nice panning effect can be achieved. If the points cross each other, the stereo image will be centered (mono) when the points cross.

Multitap mode

Multitap is a single delay line with three outputs (taps). The delay time ranges from one sample to 10 seconds. The first tap has a feedback control. The three taps can be modulated by the LFOs or a midi controller.

Multitap is less CPU efficient than Multicomb, but it allows for longer delay times.

Echos mode

New in ABSYNTH, Echos features three delay lines, each with three different filters in the feedback loop. The Master parameters (Time, Feedback and the sec/beat button) work the same way as in Multicomb mode. The maximum delay time is 0.74 seconds.

Each of the three delay lines offers the same set of parameters. Time, Feedback, Ctl Sens, Gain and Pan are comparable to their namesakes in Multicomb and Multitap modes.
The remaining parameters are:

Lowpass
Applies a lowpass filter to the signal in the feedback loop. The value in the number box sets the filter cutoff point, in Hz. The effective range is from 1.0 to 22050 Hz.

Highpass
As above, except that a highpass filter is applied. The effective range is from 1.0 to 22050 Hz.

Allpass
An allpass filter, equivalent to *allpass 4* in the Filter module. Allpass filters are particularly useful for creating 'phasing' effects. Echos' *allpass* parameter is most effective when modulated by an envelope (new envelope ⇒ effect ⇒ effect filter freq).

Resonators mode
Also new in ABSYNTH, *Resonators* provides three independent delay-based ‘resonators’. Resonators can produce delay or reverb effects, as well as various ‘small object’ kinds of effects (e.g. metal bars, brake drums, bottles).

Since there are three, you can easily combine different effects. Imagine, for example, a nearly infinite large reverb-like effect, accompanied by a smaller, brighter space that fades out quickly.

There are six Master parameters affecting all three resonators:

- **Size**: maximum delay length, 0 - 100%.
- **Feedback**: amount of feedback, 0 - 100.
- **Tone**: controls filters within the resonators. The effect depends on the resonator modes selected (see below). The range is 0 - 100.
- **Predelay**: the delay before the onset of the resonator’s effect, in milliseconds.
- **Diffusion**: random delay variations. Small amounts make the resonators sound less ‘ringy’, large amounts can sound ‘gritty’, like granular synthesis. The range is 0 - 100.
- **ER**: toggles ‘early reflections’ on/off.
Additionally, each of the three resonators has the following parameters:

Mode

There are 4 modes:
- **Raw**: damped delay. Tends to be less diffuse, and sound more ‘flut-tery’.
- **Natural**: more diffuse. Tends to sound ‘darker’.
- **Resonant**: diffuse, brighter.
- **Synthetic**: like Resonant, but more extreme.

Tone (see above) will have a very different effect depending on mode. Try experimenting with extreme settings.

Size: Scale

Resonator size is equivalent to the Master Size setting multiplied by the Size: Scale setting.

Size: Shape

This controls the delay ratios internally. Using reverb as an example, this could be equivalent to altering the size and/or shape of the room.

Size: Ctl

Controls the sensitivity to LFO modulation and MIDI parameter control. An ‘invert’ button is available.

Tone: Scale

The effective Tone setting is equivalent to Master tone multiplied by Tone: Scale.

Tone: Spread

Spread tends to make the sound more ‘diffuse’, and also tends to reduce feedback. (The effect is easier to hear than describe.)

Tone: Ctl

Controls the sensitivity to LFO modulation and MIDI parameter control. An ‘invert’ button is available.
ABSYNTH uses breakpoint envelope generators to vary parameters in time. Each envelope can have up to 68 breakpoints. ABSYNTH’s envelopes are extremely flexible and offer many possibilities you probably won't find anywhere else.

How envelopes modulate parameters

If a parameter is being modulated by an envelope, the parameter's value in the Patch window indicates its maximum value. The envelope can lower this value, but it can't go above it.

For example, if a filter is being modulated by an envelope and the filter's frequency is set to 5000Hz, the envelope's maximum range will be from 5Hz to 5000Hz.

Envelopes and voice allocation

By default, each Oscil has an amplitude envelope. The amplitude envelopes are special because they determine whether a voice is being calculated or not. When all of amplitude envelopes in a voice reach their last breakpoint, the voice stops being calculated, thus reducing the CPU load.
Envelope List

A list of all allocated envelopes. Selected envelopes will be displayed in the graphic editor. Envelope names indicate: module type (oscil, filter, mod), channel (1, 2, 3, master) and parameter.

New envelope

Create a new envelope. This will open a window to select the parameter the envelope will control. Use the popup menu to select the module (oscil 1, mod 3, master filter...), then select the parameter in the list. Only relevant parameters will appear in the list. For example if an oscil is in single mode, the FM index parameter will not appear. If you set the oscil to FM mode, then click new... again, the FM parameters will be listed.

Show

The show popup provides an easy way to show or hide groups of envelopes.

Selecting an envelope

Clicking on the graphic display of an envelope selects it for editing. When an envelope is selected, its name is highlighted.

Copy/Paste envelope

To copy the selected envelope: menu Edit ➔ Copy Envelope. To paste, select the destination envelope, then menu Edit ➔ Paste Envelope.

Amplitude/time scale

The amplitude and time scales appear on the left-hand and top edges of the envelope display respectively. Drag on these zones to zoom the amplitude and time scale of the graphic envelope display. It’s possible to zoom the time scale right down until one pixel equals one sample.
Breakpoints

A breakpoint is a target in time. Therefore, the line segment preceding the breakpoint is affected by it.

A breakpoint has three parameters: delta time, amplitude and slope. Click on a breakpoint to select it for editing. The time, amplitude and slope will appear in the number boxes. The number boxes allow very precise editing of the breakpoint parameters. You can also drag the breakpoint around to adjust its amplitude and time.

Multiple breakpoints can be select either by Shift-clicking, or by clicking and dragging a highlighted ‘selection area’ over the portion of the envelope containing the relevant breakpoints. All edit operations are applied to all selected breakpoints (amp, abs time, slope, MIDI and LFO settings are affected).

Below the time and amp number boxes, the absolute time and actual parameter value are displayed. In the image above, the selected envelope modulates the frequency of filter 1, thus the actual frequency of the filter at the selected breakpoint is displayed in the ‘parameter’ field.

Slope adjusts the curve of the breakpoint's line segment. A value of 1.0 produces a straight line, values above or below 1.0 produce varying degrees of curvature.

Creating/deleting breakpoints

Command-click (Mac) or right-click (PC) to create a breakpoint.
Option-click (Mac) or right-click again (PC) to delete it.

Transform menu

The Transform popup menu provides access to seven different functions which can be used to rapidly transform the selected envelope(s). Each function opens its own dialog, with its own specific parameters. The functions are:

Scale...
Scale the time, amp and slope values of the selected envelope(s).
Set Duration…
Set the duration of the selected envelope(s).

Generate AR Pulse…
Automatically generate a series of ‘Attack’ and ‘Release’ pulses. This can be very useful when creating rhythmic envelope shapes (e.g. to be used in Retrigger mode).

Load from / Save to library
Either load or save an envelope, via ABSYNTH’s Universal Library functions.

Initialize Selected Envelope
Reset the selected envelope(s) to ABSYNTH’s default envelope shape.

Delete Selected Envelope
Remove the selected envelope(s) entirely.

Lock/slide
In lock mode, changing the time of a breakpoint will not affect the absolute time of any other breakpoint. In slide mode, changing the time of one breakpoint will move all breakpoints that come after it. Lock mode is particularly useful when creating rhythmic envelopes.

Grid
Use the grid button to toggle the grid on and off. When the grid is activated a popup menu appears beneath the grid button, from which you can choose the resolution of the grid. The default value is 1/8 (grid lines are drawn on eighth notes). Other values include 1/16 (sixteenth notes) and 1/32 (thirty-second notes).

When the grid is displayed, envelope breakpoints ‘snap’ to grid lines automatically. Snapping can be over-ridden by Ctrl-dragging (Mac) or Alt-dragging (PC).
Note: this is the opposite of how snapping worked in earlier ABSYNTH versions! Whereas snapping used to be optional, now it is the default behaviour whenever grid lines are displayed.

Free/Sync button

Each envelope (except for Control Driven envelopes, which are independent of time) can be synced to the tempo with the sync/free toggle button.

Sustain/release marker

The sustain/release marker determines which breakpoint is the sustain/release point of the envelope. The exact function of the sustain/release point depends on the envelope mode (see below). You can drag the marker to any breakpoint, except for the first and last breakpoints.

Envelope modes

Envelopes have six different modes: **Release, Sustain, Loop, Retrigger** and **Control driven**. The **mode** popup sets the mode for the selected envelope.

There’s also a special **Sample Jump** envelope mode, which works slightly differently. We’ll look at this later.
Release Mode

If a note is held continuously, the envelope will play all the way to the last breakpoint. If a note is released before the sustain/release point is reached, the envelope will ‘jump’ to the time of the sustain/release point and continue playing to the last breakpoint.

This is useful for percussive and piano-like envelopes where the sound always decays. If the sustain/release point is set near the very beginning, the envelope will act as a ‘straight-shot’, i.e. it will always be the same, regardless of how long the note was held.
Sustain mode

Sustain mode is similar to a classic ADSR envelope generator. If a note is held continuously, the envelope will play until the sustain/release point is reached, at which point it will pause at the amplitude of the sustain/release point. When the note is then released, the envelope will resume playing until the last point is reached. If a note is released before the sustain/release point is reached, the envelope will ‘jump’ to the time of the sustain/release point and continue playing to the last breakpoint.
Loop mode

When loop mode is selected, in addition to the red sustain/release marker, the loop start marker will be displayed. This looks like a sideways ‘U’. You can drag it to any breakpoint before the sustain/release point and after the start point.

Line segments which are part of the loop are blue, line segments outside the loop are green. It is important to understand that a breakpoint is a target point in time. Therefore, the line segment preceding the loop start point is a part of the loop.

In loop mode, when the sustain/release point is reached, the envelope will go back to the loop start point and continue looping as long as the note is held. The duration between the end of the loop and the start is the delta time of the loop start point.
Retrigger mode

The envelope will be retriggered at the rate set in the retrigger number box as long as the note is held. When the note is released, the envelope will jump to the time of the sustain/release point and play to the end. If the sustain/release is reached within the retrigger loop, the envelope will sustain. **Retrigger** is particularly useful for creating rhythmic, looping envelopes. The Retrigger beat number box allows you to set the retrigger rate as a number of beats.

Control Driven mode

Even though **Control Driven** envelopes look like all other envelopes, they are inherently very different. A MIDI controller sets the position in the **Control Driven** envelope. With a MIDI value of 0, the envelope is at the beginning, at 64 it's in the middle, and at 127 it's at the end. It's easiest to understand **Control Driven** mode by contrasting it with a standard envelope: While time controls a normal envelope, the MIDI controller (typically the Mod wheel) controls **Control Driven** mode.

If a straight diagonal line is drawn from the minimum value to the maximum, then moving the Mod wheel will directly control the parameter assigned. But things get really interesting when we draw in a more complex shape for the **Control Driven** envelope. We can dynamically
morph between sounds, create arpeggios with the turn of a knob, or even use a Mod wheel to control the speed of an envelope-based rhythm. There are many patches that demonstrate each of these uses of the **Control Driven** envelopes in the Factory Presets bank.

To create a **Control Driven** envelope, simply choose **Control Driven** in the mode menu at the top of the envelope window for the envelope which you’d like to be control driven.

No matter how long or how many points the **Control Driven** envelope has, the range of the MIDI controller controlling the envelope is from the beginning to the end of the envelope.

Link mode

When two or more envelopes are linked together, any changes to the master envelope will become immediately apparent to all child envelopes. To create a linked (child) envelope, choose **Link** in the mode menu at the top of the envelope window for the envelope which you’d like to become linked.

Even though you cannot directly edit a linked envelope, you can still give it some distinct characteristics. Note that all changes are graphically shown in the linked envelope display. **source menu**: Selects the master envelope.

- **time %**: Scales the time of the linked envelope. 50% is double the speed of the master envelope, while 200% is half speed.
- **amp %**: Scales the amplitude of the linked envelope.
- **amp offset**: Raises or lowers the baseline of the linked envelope.
- **slope %**: Scales the slope of the linked envelope.
Not only can the **Link** mode save a lot of time when editing similar envelopes, but it can also be used in creative ways. For instance, the filter cutoffs of different channels can have slight slope or time scalings to create an organic sound. Likewise, linking and then slightly scaling oscillator pitch creates interesting detunings.

These two envelopes are linked, but the bottom envelope’s slope is scaled. All changes to the master envelope (top) are immediately reflected in the bottom.

Sample Jump envelopes

The **sample jump** envelope retriggers the sample in time. The retrigger position in the sample can be different for each breakpoint in the **sample jump** envelope. This type of envelope looks quite different from all other envelopes - instead of a breakpoint curve, the **sample jump** envelope shows the actual sample waveform. The **sample jump** envelope only works with an Oscil in Sample mode, not Granular mode.

To create a **sample jump** envelope, you must first have at least one Oscil set to sample mode, and a sample loaded. Even though **sample jump** works well with all types of material, it’s easiest to see what’s going on with a drum loop or similar type of sample.

In the envelope window, hit the **new envelope** button and choose **oscil 1** (or whichever oscillator has the sample loaded that you’d like to manipulate) => **oscil 1 sample jump**. You should now see the **sample jump** envelope - and your sample’s waveform - in the envelope window.

New points are created in the **sample jump** envelopes just like all other envelopes, by command-clicking (Mac) or right-clicking (PC). The **delta time/abs time** number box for that breakpoint sets the time that the
sample will be retriggered. The retrigger position in the sample can be changed with the % number box, which sets the position in percentage of total length.

The sample jump envelope type lets you retrigger different regions of the sample, and can be synced to tempo.

Integrated LFOs in Envelopes

Each envelope can have its own LFO, and the shape of the LFO can even be drawn in ABSYNTH’s waveform editor. The whole envelope shares the same LFO shape, but each breakpoint can have a different depth and speed. All envelope LFO settings are graphically displayed in the envelope window.

To activate the LFO for an envelope, select that envelope and click on the LFO tab at the top of the envelope window. The LFO settings are set per breakpoint, so select a breakpoint and then increase the depth until you see the LFO being drawn. Different settings between breakpoints are smoothly faded. For instance, if one breakpoint had an LFO depth of 100
Each envelope can have its own LFO, with independent parameters per breakpoint. The LFO parameters are set in the LFO tab on top of the envelope window.

The envelope-global LFO parameters are:

- **wave menu**: Selects the LFO waveform, or enables you to draw your own by selecting a new preset.
- **phase**: Sets the initial phase of the LFO.
- **wave/SH toggle**: When set to a triangle icon, then the LFO assumes the shape of the selected wave. When set to a sample and hold icon, then the LFO becomes a random sample and hold function.

The breakpoint-specific LFO parameters are directly underneath the global parameters:

- **depth**: Sets the depth of the LFO, from 0 to 100.
- **sec**: Sets the speed of the LFO, in seconds. A fast LFO would have a low value here.
• **S/H sec:** Sets the sample and hold speed, in seconds. A low value here would correspond to a fast speed. Only active when the wave/SH toggle button in the envelope-global section is set to the sample and hold icon.

MIDI controlled envelopes

The position of each breakpoint in an envelope can be controlled by MIDI. It’s even possible for each breakpoint in an envelope to be controlled by unique MIDI controllers! The shape of an envelope can therefore dynamically change according to MIDI controllers or velocity.

![MIDI Controlled Envelopes](image)

Each breakpoint can have MIDI controller over its time and amplitude. It’s therefore possible for the shapes of the envelopes to dynamically change in response to velocity or MIDI controllers.

To activate MIDI control of a breakpoint, simply click on the MIDI tab at the top of the envelope window. There are no envelope-global MIDI parameters (except for turning MIDI control on or off for the whole envelope). The breakpoint-specific MIDI parameters are:

- **time source:** Selects which MIDI input will scale the time of the breakpoint. Aftertouch, velocity, pitch bend, or any MIDI controller can be selected.

- **time scale:** Amount of time scale. Positive values will shift the time ahead when the MIDI controller value is positive, while negative values reverse the polarity of the MIDI controller response. The complete positive range, from 0 to 100, is the percentage of delta time to the previous breakpoint. The complete negative range, from -100 to 0, is
also the percentage of delta time to the previous breakpoint, but the response of the MIDI controller is inverted - at 0, the breakpoint is shifted maximally forward, and at 127, the breakpoint is in its graphical position.

- **amp source**: Selects which MIDI input will scale the amplitude of the breakpoint. Aftertouch, velocity, pitch bend, or any MIDI controller can be selected.

- **amp scale**: Amount of amplitude scale. Negative values will lower the amp, while positive values raise it. The complete range, from -100 to 100, is from zero to the graphical value of the breakpoint.

For realistically playable sounds, try mapping velocity to control the amplitude envelope or filter envelope attack time, for example.
ABSYNTH has three low frequency oscillators. Each LFO can modulate numerous parameters simultaneously. Each parameter can also be modulated by all 3 LFO’s simultaneously for complex modulation effects. Waveforms can be created and edited with the Waveform window, allowing for any possible waveshape. LFO’s have a sample-and-hold mode.

LFO button

Turns an LFO on or off.

Mono/Poly button

In **mono** mode, one LFO will modulate all voices. In **poly** mode each voice will have its own LFO.
Note: because delay effects are always ‘mono’, you probably should avoid modulating the effect with an LFO in poly mode. The same is true for the master filter if it’s in mono mode.

Wave popup

Select or create a waveform. Currently wave popups are organised into two submenus: ‘factory’ contains all of ABSYNTH’s built-in waveforms, ‘preset’ contains user-created waveforms. Wave ➔ preset ➔ new... will allocate a new waveform and open the waveform editor. Each preset can have up to 8 waveforms allocated.

User-created waveforms are only available to the preset in which they were created, they cannot be accessed from other presets.

Phase

The initial phase of the waveform. In Poly mode, the phase of the LFO is initialised to this value at the start of a note. In Mono mode the LFO runs continuously so this will have no perceptible effect, unless the LFO is retriggered.

Rate

LFO rate in seconds. Can be toggled between sec and beat (tempo-synced). In beat mode, you can simply enter the duration of an LFO cycle in number or fractions of a beat.

Sample and hold

Toggles between sample-and-hold and continuous mode. Rate sets the sample-and-hold rate. Usually the most interesting results are obtained when the sample-and-hold rate is out of phase with the LFO rate.
Depth

Controls the modulation depth for the following parameters: pitch, amplitude, fm index/balance, filter frequency, effect time and pan. Pitch depth is displayed in semitones. Depth for the other parameters is a percentage of the Patch window value.

The **invert** button for each parameter inverts the modulation.

The **channel** toggle buttons turn modulation on or off for each channel (1, 2, 3, master). For example, an LFO could modulate the frequency of filter 1, leaving the other filters unaffected. Similarly, one LFO could modulate the frequency of filter 1, and another LFO could modulate filter 2.

Controller

Three LFO parameters can be modulated by midi controllers: master depth, LFO rate and sample-and-hold rate. Depth is set with the ‘%’ number boxes.

To set the control source, click on a controller select button. This will open a window with a list of midi controllers. Double-click on the desired controller.

Retrigger

When retrigger is on, the LFO can be retriggered by the selected control number. When a control value greater than 0 is received, the LFO will ‘restart’.

For example, if control number 64 (sustain pedal) is selected, depressing the sustain pedal will retrigger the LFO, but releasing the pedal will have no effect.

Note: all LFOs use the same control number. Setting the control number in one LFO will change it in the other LFOs.
LFOs and surround panning

When pan is modulated by an LFO and surround mode is activated in the Patch window, both the left/right and front/back pan position will be affected.

The wave phase of front/back modulation is offset by 90° from the wave phase of left/right modulation. With a sine wave this will produce rotation. Other waveforms produce more complex movements.

Waveforms with discontinuities (sudden jumps, e.g. saw and square waves) may sound surprising at first. This is because the front/back panning reaches the discontinuity in the waveform at a different time than the left/right panning. So for example, left/right panning may ‘jump’ first, with front/back panning jumping a moment later.
MIDI window

The MIDI window allows you to control how the active preset will respond to MIDI input.

MIDI controllers

This is where you can set how the active preset will respond to continuous controllers, pitch bend and aftertouch.

Glide

The pitch glide time between notes can be set in the MIDI controllers panel of the MIDI window. The glide time can be set from 0 to 999. The keyed button activates a legato mode, where glide is only active when the note is held down. In legato mode, staccato playing won’t activate glide.

Controller select

To set the control source, click on a controller button. This will open a window with a list of MIDI controllers. Double-click on the desired controller.

Depth

For pitch bend, depth is displayed in semitones. The maximum pitch bend range is plus or minus 72 semitones (6 octaves). For other parameters depth is set as a percentage.

Lag

Lag adjusts how quickly the parameter responds to the continuous controller. Low settings (1-15) have a subtle smoothing effect, higher settings (up to 999) will result in a long exponential curve.
Channel buttons (1, 2, 3, master)

The channel buttons determine what channels are affected by the controller. For example, the mod wheel could be set to control filter 1 without affecting filter 2.

MIDI Controllers: velocity

![Velocity settings](image)

Velocity depth can be set independently for Oscil amp, Fm index/balance and Filter frequency by channel (1, 2, 3, master). Values range from 0% to 100%.

Controllers: note scaling

![Note scaling](image)

Note scaling allow you to scale the value of a parameter according to the note that is played. For example, it would be possible to increase the frequency of a filter as higher notes are played.

The param popup selects what parameter to edit. Currently the following parameters can be controlled by a note scaling curve: oscil amplitude, fm index/balance, and filter frequency.
You can draw curves directly in the graphic editor. You can also edit one note at a time using the `note#` box to set the edit note and `%` to set the scale. If the keyboard button is selected, playing a note will automatically select the edit note, then you can enter values in the `%` number box.

Controllers: Tune

ABSYNTH has a tuning editor where nearly any alternate tuning imaginable can be programmed. You can even set the Hz value of each key with six decimal place accuracy (one millionth of a Hz precision!).

Working with Custom Tunings

The tune popup menu in the main keyboard window has been expanded. Several submenus are now available:

- **factory...**: submenu that displays the familiar factory tunings from ABSYNTH 1.x.
- **bank...**: submenu that displays all custom tunings used in the bank.
- **library...**: submenu that displays the custom tunings available in the `/tuning` folder of your ABSYNTH library. Once a library tuning is recalled, it is automatically saved with the bank.
- **edit**: opens the tuning editor, only available if a bank tuning is selected.
- **new**: creates a new custom tuning and opens the tuning editor. The new tuning is automatically saved with the bank.

Making Custom Tunings

The center of the tuning editor is a list of all 128 possible MIDI notes. Each note can have its own tuning value entered in fractional `note` numbers, `Hz`, and `ratio` (relative to the `base key`). The `ratio` is the ratio between the key you’re editing and the base key. Base key is normally set to a constant reference, like the root of a scale. The ratio numberbox is disabled if the base key is the same as the selected key.

When `octave link` is off, you can tune one note at a time without changing any other notes. When `octave link` is on, changing one note will also change notes in the octaves above and below it.
What is an octave?

Keys per 8ve sets the number of midi keys in an octave. If it's set to 11, for instance, then when you change the pitch of one note (with **octave link** on), then every 11th note above and below the chosen key will be correspondingly tuned, plus the value set in **8ve interval**.

For example, let's consider a typical 12-notes per octave tuning. In this example, **keys per 8ve** is 12, and the **8ve interval** is also 12.

For stretched tunings (like a piano), then the **8ve interval** should be set a bit sharp, like 12.01.

To automatically generate quarter tones, set **keys per 8ve** to 1 and the **8ve interval** to 0.5.

To automatically generate eighth tones, set **keys per 8ve** to 1 and the **8ve interval** to 0.25.

Note that the octave link parameters affect the way the other parameters work, so you won’t hear any changes until you change note, Hz, or ratio.
Universal Library

The Library functions in ABSYNTH make it easy to patch together complex sounds. Entire oscillator channels (with all relevant envelopes), modules, waveforms, envelopes, and effects can all be saved to and loaded from a universal Library. The Library is stored in the ABSYNTH application folder.

Patch Window Library Functions

From the Patch window, it's possible to save and recall oscillator channels, modules, and effect settings, all with the relevant envelopes. When a channel, module, or effect setting is saved to the Library, the envelopes are automatically saved.

To save or recall Library settings, simply Ctrl-click (Mac), or rightclick (PC) in the blank part of the module you'd like to save from or recall to (regardless of whether it is active or not). ABSYNTH automatically sorts the Library for you: you can't recall a filter setting in an oscillator module, for instance. To save or recall a complete channel, you must Ctrl/right-click in the oscillator channel.

Envelope and Waveform Window Library Functions

It's also possible for individual envelopes (separate from their modules) and waveforms to be stored in the Library, from the Envelope and Wave windows respectively. In these two windows, the Library functions are available in the Transform menu.

Copy and Paste

Anything that can be put in the Library can also be copied and pasted, even between different patches or banks. Simply call up the library menu and choose the relevant copy or paste function.
Just try it out

ABSYNTH is installed with a comprehensive Library for channels, modules, envelopes, effects, and waveforms. To see how quickly you can build up a complex patch by activating pre-made channels from the library, for instance, just Ctrl/right-click in the blank space of an oscillator module in the patch window. Choose any complete channel from the context menu, then do the same for the other two oscillator menus. Voila! In just a few seconds you've created a patch that might have taken hours to create 'by hand'.
Record window

Note: this window is not available when using ABSYNTH as a plugin.

Stop, play and record

To record the sound output of ABSYNTH, click record (record ready) then play.
To play back previously recorded sound, click play.
To stop sound playback or recording, click stop.

Wait for note

When wait for note is on, click record (record ready) then start playing to initiate recording. Recording will begin when the first note (via MIDI or the on-screen keyboard) is played.
If overdub and wait for note are both on, play will begin only when the first note is played.

Start point

Move the little red arrow to set the start point for recording or playback.
Overdub mode

When overdub is on, newly recorded sound will be permanently mixed with previously recorded sound. The synth and tape sliders allow you to set the level of the previously recorded sound (tape) and newly recorded sound (synth). You can layer as many sounds as you want.

Time available

Displays the total time available for recording.

ABSYNTH records to RAM, not direct-to-disk, so the time available depends on how much RAM is available. Be aware that stereo sound requires about 10mb per minute of sound.

The time available is also affected by whether recording is in stereo or mono, and if undo is enabled or not. Maximum record time is available in mono mode with undo disabled; minimum in stereo mode with undo enabled. See below for information on the undo and stereo options.

Stereo

When stereo is on, audio output will be recorded in stereo, otherwise it will be in mono. Toggling this button will cause all previously recorded audio to be erased. Turning stereo off will double the time available for recording.

Undo

Undo/redo recording. Undo can be disabled/enabled via the options… button. Disabling undo will double the time available for recording.

Save

Save recorded audio to an AIFF or WAV file. If stereo is off, a mono file will be created. With stereo on, either an interleaved stereo file or two mono files will be made, depending on the options settings.
Clear

Erase all recorded audio.

Options

This opens a window where you can set various record options:

- **Record undo options**: When *undo* is disabled, available record time will be doubled.
- **AIFF stereo file options**: Choose whether stereo audio will be saved as a single file (interleaved) or as two mono files (split stereo). Some multitrack audio applications don't support interleaved stereo files.
Global Tempo Sync

Each envelope (except for Control Driven envelopes, which are independent of time) can be synced to the tempo with the sync/free toggle button. When sync is activated, the envelope will automatically be scaled to the current tempo, as set in the main keyboard window or via plug-in sync. Note that retrigger envelopes are always synced. Therefore, when an ABSYNTH 1.x patch is loaded, the retrigger envelopes will be automatically synced, but the other envelope types, LFOs, and effect times are free. If a 1.x patch doesn’t sync properly, you may need to manually hunt down the free parameters and set them to sync.

The effect time and LFO speed can also be synced to tempo. When setting the effect time or LFO speed, simply select beat from the sec/beat toggle button to set the time or speed in musical values.

The global tempo is set from the main keyboard window in standalone operation. When using ABSYNTH as a plug-in, the host tempo is automatically received.
Symbols
+ / - button 56

Numerics
8ve interval 96

A
abs time 83
AIFF stereo file 101
Allpass 70
allpass 2 54
allpass 4 54
allpass 8 54
amp % 82
amp offset 82
amp scale 87
amp source 87
amplitude 75
Amplitude slope 64
Amplitude/offset sliders 62
Amplitude/time scale 74
Anti-aliasing 48
ASIO 20
Audio In 43
Audio In mode 53
Audio Interface 22
Audio Interfaces 18
Audio Units 20
Authorization Key 3
Auto Balance Channel 37

B
Balance 63
balance 43, 56
bank 95
base key 95
bpf 54
Breakpoints 75

C
Carrier frequency 64
Channel buttons 94
Clear 65
Clear all 66
Clear amplitude 66
Clear phase 66
comb 54
Consolidate Bank 51
Control Driven mode 81
Controller 91
Controller select 93
Copy and Paste 97
Copy/Paste envelope 74
Core Audio 20
Creating/deleting breakpoints 75
Ctl 71
Ctl Sens 69
Ctl Sens/invert 68
Cubase 26
Curve tool 62
Custom Tunings 95

D
dB 40
DC offset 63
Delete Selected Envelope 76
delta time 75, 83
dens 51
Depth 91, 93
depth 85
Diffusion 70
DirectSound 20
Displacement 64
displacement 46
Double 42, 43
Double mode 43
Draw harmonics tool 66
Draw one harmonic tool 66
DXi 31
DXi 2 20
E
Echos 69
Echos mode 69
edit 95
Edits 39
Effect button 67
Effect module 59
Effect window 67
Enable ProgramChange 37
Envelope List 74
Envelope modes 77
Envelope window 73
Envelopes 73
ER 70
Extract from AIFF/WAV 64
F
factory 44, 95
Feedback 56, 69, 70
Feedback % 68
Feedback (master) 67
Filter module 54
FM 42, 43, 47, 64
fm index 43
FM mode 43
Fractalize 42, 43, 64
Fractalize mode 45
Free/Sync 77
Freq Shift mode 56
frequency 43
frequency mode popup 50
frequency number box 50
Frequency ratio 63
G
Gain 69
Gain and pan 68
Generate AR Pulse 76
Glide 93
Granular 43, 49
Granular mode 50
Grid 76
H
Highpass 70
Hold 39
hpf -12dB 54
hpf -6dB 54
Hz 44, 47
I
in dB 59
Initialize Selected Envelope 76
input position 68
Installation under MacOS X 16
Installation under Windows XP 13
Interface 22
Invert phase 63, 66
iterations 45
K
Keyboard 39
keyed 93
Keys per 8ve 96
L
Lag 93
LFO button 89
LFO window 89
LFOs and surround panning
92
library 95
Line tool 62
Link mode 82
Load from / Save to library 76
Load Wave 61, 64, 66
Load Wave from Library 64
Loading samples 49
Lock/slide 76
Logic 28
Loop All 50
Loop Edit 50
Loop mode 80
loopend 50
loopstart 50
Lowpass 70
Lowpass % 68
Lowpass (master) 68
lpf -12dB 54
lpf 2 pole 54
lpf -24dB 54
lpf 4 pole 54
lpf -6dB 54
lpf 8 pole 54
M
Main 43
Main / Mod tabs 44
Main window 35
Midi Channel 37
MIDI controlled envelopes 86
MIDI controller sliders 39
MIDI controllers 93
MIDI window 93
Mix 63
MME 20
Mod 43
Mod module 55
Mode 42
Modulation index 64
Modulator frequency 64
Modulator phase 64
Modules 41
Mono/Poly 55, 58, 89
Mono/surround 57
Multicomb 67
Multicomb mode 67
Multitap 69
Multitap mode 69
N
Natural 71
Navigation Bar 35
new 95
New envelope 74
No Loop 50
Normalize 63
notch 54
note scaling 52, 94
note# 95
Nuendo 27
num voices 44
Number of iterations 64
O
octave link 95
offset 63
Offset phase 63
Options 101
Oscil module 42
out dB 59
Output Device 23
Output Latency 23
slope 75
slope % 82
Sonar 32
Soundcard 22
spectrum 62
Spectrum mode 65
Stand-alone 18
Standalone 22
start % 50
Start point 99
Stereo 100
Stereo and Mono samples 49
Stop 99
Store 38
Stretch tool 63
surround 57
Sustain 39
Sustain mode 79
Sustain/release marker 77
Synthetic 71
System ID 3
System Requirements 13, 16
T
Time 69
Time % 68
time % 51, 82
Time (master) 67
Time available 100
time scale 86
time source 86
Tone 70
Trans 44, 46
trans 44
Transform menu 75
Transform popup 63, 66
Transpose 40
Tune 95
Tuning 40
U
undo 100
Uni tab 44
Universal Library 97
user 44
V
velocity 94
voice allocation 73
VST 20
VST 2.0 Plug-in 32
W
Wait for note 99
Wave 43
wave menu 85
Wave popup 44, 56, 61, 90
Wave window 61
wave/SH 86
wave/SH toggle 85
Waveform mode 62
Waveform/spectrum 62
Waveshape module 58
Wavetable synthesis modes 43