Copyright © 2004 Autodesk, Inc.

All Rights Reserved

This publication, or parts thereof, may not be reproduced in any form, by any method, for any purpose.

AUTODESK, INC. MAKES NO WARRANTY, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THESE MATERIALS AND MAKES SUCH MATERIALS AVAILABLE SOLELY ON AN "AS-IS" BASIS.

IN NO EVENT SHALL AUTODESK, INC. BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF PURCHASE OR USE OF THESE MATERIALS. THE SOLE AND EXCLUSIVE LIABILITY TO AUTODESK, INC., REGARDLESS OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE OF THE MATERIALS DESCRIBED HEREIN.

Autodesk, Inc. reserves the right to revise and improve its products as it sees fit. This publication describes the state of this product at the time of its publication, and may not reflect the product at all times in the future.

Autodesk Trademarks

The following are trademarks of Autodesk, Inc., in the USA and/or other countries: AutoCAD Learning Assistance, AutoCAD LT Learning Assistance, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface, AutoSnap, AutoTrack, Built with ObjectARX (logo), burn, Buzzsaw.com, CAICE, Cinestream, Civil 3D, cleaner central, ClearScale, Colour Warper, Content Explorer, Dancing Baby (image), DesignCenter, Design Doctor, Designer’s Toolkit, DesignProf, DesignServer, Design Web Format, DWF, DWIF, DWG Linking, DXF, Extending the Design Team, GDX Driver, gmax (logo), gmax ready (logo), Heads-up Design, jobnet, lustre, ObjectDBX, onscreen onair online, Plans & Specs, Plasma, PolarSnap, Productstream, Real-time Roto, Render Queue, Visual Bridge, Visual Syllabus, and Where Design Connects.

Autodesk Canada Inc. Trademarks

The following are registered trademarks of Autodesk Canada Inc. in the USA and/or Canada, and/or other countries: discreet, fire, flame, flint, flint RT, frost, glass, interno, MountStone, riot, river, smoke, sparks, stone, stream, vapour, wire.

The following are trademarks of Autodesk Canada Inc., in the USA, Canada, and/or other countries: backburner, Multi-Master Editing.

Third Party Trademarks

All other brand names, product names or trademarks belong to their respective holders.

Third Party Software Program Credits

ACIS Copyright © 1989-2001 Spatial Corp. Portions Copyright © 2002-2004 Autodesk, Inc. Copyright © 1997 Microsoft Corporation. All rights reserved.

International CorrectSpell™. Spelling Correction System © 1995 by Lernout & Hauspie Speech Products, N.V. All rights reserved.

PANTONE® Colors displayed in the software application or in the user documentation may not match PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color.

PANTONE® and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2002

Pantone, Inc. is the copyright owner of color data and/or software which are licensed to Autodesk, Inc., to distribute for use only in combination with certain Autodesk software products. PANTONE Color Data and/or Software shall not be copied onto another disk or into memory unless as part of the execution of this Autodesk software product.

Portions Copyright © 1991-1996 Arthur D. Apagge. All rights reserved.

Portions of this software are based on the work of the Independent JPEG Group.

RAL DESIGN © RAL, Sankt Augustin, 2002

RAL CLASSIC © RAL, Sankt Augustin, 2002

Reproduction of the RAL Colors is done with the approval of RAL Deutsches Institut für Gütesicherung und Kennzeichnung e.V. (RAL German Institute for Quality Assurance and Certification, re. Assoc.), D-53757 Sankt Augustin.

Copyright © Stade de France - Macary, Zublena et Regembal, Costantini - Architectes, ADAGP - Paris - 2003

Typefaces from the Bitstream® typeface library copyright 1992.

Typefaces from Payne Loving Trust © 1996. All rights reserved.

Genius™, Genius CAD Software GmbH and CoKG, licensed to Autodesk Inc. for limited use in connection with Genius™14, Genius™ LT, Genius™ Desktop, Genius™ Mold, Genius™ Motion, Genius™ Pool, Genius™ Profile, Genius™ SAP, Genius™ TNT, and Genius™ Vario.

Cypress Enable™, Cypress Software, Inc.

dBASE™, Ksoft, Inc.

SPEC™, Associated Spring/Barnes Group, Inc.

LUCA TCP/IP Package, Portions Copyright © 1997 Langener GmbH. All rights reserved.

Stringray Objective Toolkit & Objective Grid © Rogue Wave Software, Inc.

PKWARE Data Compression Library ©, PKWARE, Inc.

GOVERNMENT USE

Use, duplication, or disclosure by the U. S. Government is subject to restrictions as set forth in FAR 12.212 (Commercial Computer Software-Restricted Rights) and DFAR 227.7202 (Rights in Technical Data and Computer Software), as applicable.
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
</table>

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>About AutoCAD Electrical</td>
<td>2</td>
</tr>
<tr>
<td>Learning AutoCAD Electrical</td>
<td>2</td>
</tr>
<tr>
<td>Using Help</td>
<td>2</td>
</tr>
<tr>
<td>Selecting Projects</td>
<td>3</td>
</tr>
<tr>
<td>Add Existing Drawings</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 1 Wires</td>
<td>7</td>
</tr>
<tr>
<td>About Wires</td>
<td>8</td>
</tr>
<tr>
<td>Inserting Wires</td>
<td>8</td>
</tr>
<tr>
<td>Trimming Wires</td>
<td>10</td>
</tr>
<tr>
<td>Chapter 2 Schematic Components</td>
<td>11</td>
</tr>
<tr>
<td>About Schematic Symbols</td>
<td>12</td>
</tr>
<tr>
<td>Inserting Components</td>
<td>12</td>
</tr>
<tr>
<td>Inserting Parent Components</td>
<td>12</td>
</tr>
<tr>
<td>Scooting Components</td>
<td>15</td>
</tr>
<tr>
<td>Inserting Child Components</td>
<td>15</td>
</tr>
<tr>
<td>Aligning Components</td>
<td>18</td>
</tr>
<tr>
<td>Inserting Push Buttons</td>
<td>18</td>
</tr>
<tr>
<td>Inserting Pilot Lights</td>
<td>20</td>
</tr>
<tr>
<td>Inserting System Reset Buttons</td>
<td>21</td>
</tr>
<tr>
<td>Generating Component Reports</td>
<td>23</td>
</tr>
</tbody>
</table>
Chapter 3 Drawings ... 25
 Working with Templates ... 26
 Selecting Templates .. 26
 Inserting Ladders .. 27
 Inserting 3-Phase Wires .. 31
 Adding Drawings to Projects 33
 Adding Drawing Descriptions 35

Chapter 4 PLC .. 37
 About PLC Modules .. 38
 Inserting PLC modules .. 38
 Removing Ladder Rungs .. 43
 Using Multiple Insert Component 44

Chapter 5 Wire Numbers .. 49
 About Wire Numbers ... 50
 Attaching Source Signal Arrows 50
 Attaching Destination Signal Arrows 52
 Inserting Wire Numbers .. 58
 Deleting Wire Numbers ... 61

Chapter 6 Panel Layouts .. 63
 About Panel Layouts .. 64
 Inserting Panel Components 64
 Modifying Attributes ... 77
 Inserting Nameplate Footprints 79

Index ... 83
AutoCAD® Electrical software provides tools that extend the capabilities of AutoCAD® allowing you to quickly build and manage an electrical controls drawing set. This manual provides conceptual information to help get you started and exercises that introduce you to the capabilities of AutoCAD Electrical.
About AutoCAD Electrical

All of the AutoCAD commands and features are available while working on AutoCAD Electrical drawings. All intelligence is carried directly on the drawing using AutoCAD blocks with attributes and XDATA. AutoCAD Electrical does not require any underlying database.

Learning AutoCAD Electrical

It is assumed that you have a working knowledge of the AutoCAD interface and tools. If you do not, use the integrated Design Support System (DSS) to access the online documentation.

It is also recommended that you have a working knowledge of Microsoft® Windows NT® 4.0, Windows 2000, or Windows XP, and a working knowledge of electrical design and schematic ladder wiring diagrams.

Using Help

As you work, you may need additional information on the task you are performing. The AutoCAD Electrical Help system provides detailed concepts, procedures, and reference information about every product feature. To access the Help system:

- Select Help ➤ Electrical Help Topics from the standard toolbar.
- Click the Help button or press F1 within a dialog box.
Selecting Projects

For your convenience, you can select a project file for the exercises in this book.

NOTE You must install the JIC drawing standards for these exercises to function properly.

To select an AutoCAD Electrical project

1. Click the Project New/Existing tool.
 - Menu: Projects ➤ Project ➤ Project New/Existing

2. In the Project dialog box, click the Pick Project button.

3. In the Recent Projects dialog box, click the Other Projects button.

4. In the Select Project file, select AEGS.wdp from the AeData/Proj/Aegs directory, and then click Open.

Add Existing Drawings

Add existing drawings to the active project.
To add drawings to the project file

1. In the Project aegs dialog box, click the Add button.
2. In the ADD drawing(s) dialog box, click Multiple to add multiple drawings to the current project.
3. In the Browse for Folder dialog box, choose the Aegs folder, and then click OK.
4. In the ADD Drawings(s) to Current Project dialog box, select drawings DEMO01.dwg to DEMO09.dwg, and then click OK.
 The Project aegs dialog box is displayed with the files listed in the Project Drawing List section.
5. Click OK Project in the Project aegs dialog box.
6. In the No Project Database File Found dialog box, click OK.

You now have convenient access to the needed files when you start using the exercises in this book.
View drawings using the Project aegs dialog box.
To quickly view drawings in a project

1. Click the Project New/Existing tool.

 Menu: Projects ➤ Project ➤ Project New/Existing

2. Highlight demo04.dwg.

3. In the Project aegs dialog box, Project Drawing List section, click the View button.

4. In the Project aegs dialog box, continue to click the drawing name you want to preview.

5. When you have finished viewing the drawings, click the Close button in the Drawing Preview dialog box.

 After you open a drawing, you can still quickly view drawings using the Next and Previous Project Drawing tool.

To view project drawings once a drawing is open

1. In the Project aegs dialog box, double-click demo04.dwg to open.

2. Use the navigation tools Previous Project Drawing and Next Project Drawing to view the drawings.

This is the end of this tutorial chapter.
AutoCAD® Electrical treats AutoCAD line entities as wires when the lines are placed on an AutoCAD Electrical defined wire layer. These lines get tagged with wire numbers and show up in various wire connection reports. Two wire segments connect if the end of one wire segment touches or falls with a small trap distance of any part of the other wire segment. This connection can be at the end of the other wire or anywhere along the length of the other wire. AutoCAD Electrical considers a wire connected to a component if the wire end falls within a trap distance from the wire connection-point attribute of a component.
About Wires

An AutoCAD Electrical wire is an AutoCAD line entity on an AutoCAD Electrical wire layer. The wire layer for a new wire segment is determined by:

- Wires that begin or end in space or begin and end at a component connection point, are put on the current layer (if it's a wire layer) or on the first wire layer AutoCAD Electrical finds in a layer name search.
- Wires that begin at an existing wire take on the same layer as the beginning wire.
- Wires that begin in space or at a component and end at an existing wire take on the layer of the ending wire.

Inserting Wires

You can start or end a wire segment in empty space, from an existing wire segment, or from an existing component. If you start from a component, the wire segment snaps to the wire connection terminal closest to your pick point on that symbol. If the wire segment ends at another wire segment, a DOT (block name wddot.dwg) is applied if appropriate. If it ends at another component, the segment connects to the wire connection terminal closest to your pick point on that symbol.

To insert single phase wiring

1. Click the Project tool to open the aegs project.

 Menu ➤ Projects ➤ Project ➤ Project New/Existing

2. In the Project dialog box, Project Drawing List section, double-click demo04.dwg to open the drawing.

3. Zoom in on the upper left corner of the drawing.

4. Click the Add Rung tool.

 Menu ➤ Wires ➤ Add Rung
5 Respond to the prompts as follows:

Add rung passing through this location:
Select a location between the two vertical bus wires beside line reference 403 (1)
Add rung passing through this location: Select a location between the two vertical bus wires beside line reference 404, underneath the newly created rung (2)

Two horizontal wires are created.
Next, create two vertical wires between the two horizontal wires.

6 Click the Insert Wire tool.
Menu Wires ➤ Insert Wire

7 Respond to the prompts as follows:
Select component or branch for WIRE (S=show connections):
Select the top wire at line reference 403(1)
Select component or branch for WIRE (S=show connections): to: (V=start Vertical; H=start Horizontal): Select the lower wire at line reference 404 (2)

8 Insert another wire to the right of the new wire.
The inserted wires resemble the following:
Trimming Wires

After you insert wires, you may need to trim them. The Trim Wire tool removes wire segments. You can trim single or multiple wires.

To trim a wire

1. Click the Trim Wire tool.

 Menu ➤ Wires ➤ Trim Wire

2. Respond to the prompts as follows:
 Fence/Zext/<Select wire to TRIM>:
 Specify the wire segment at line reference 404 between the two vertical wires (1)

Wire segments are trimmed back to a connecting dot, a component, or completely if neither is encountered along the segment. Any connection dots that are no longer needed are removed.

The trimmed wire resembles the following image:

This is the end of this tutorial chapter.
An AutoCAD® Electrical schematic component is an AutoCAD block with certain expected attributes. When inserting components, you can use AutoCAD Electrical tools to automatically break wires, assign unique component tags, cross reference related components, and enter values for catalog information, component descriptions, and location codes.
About Schematic Symbols

AutoCAD Electrical supplies a schematic symbol dialog box for inserting schematic components. Besides making it easy to find and insert the desired symbol, it also triggers a number of additional features such as automatic wire breaks, component tagging, real-time cross-referencing, and component annotation.

Inserting Components

AutoCAD Electrical employs a parent/child relationship for schematic components. A relay coil with a certain number of contacts is represented by the parent coil symbol and the child contact symbols. When the parent coil symbol is inserted, it is assigned a unique component tag. When the child contact symbols are inserted, the child is related to the parent and the parent tag is assigned to the child symbol.

Use the Insert Component dialog box to insert components into demo04.dwg.

Inserting Parent Components

Start by inserting the parent component.

To insert a parent component

1. Click the Insert Component tool.

 Menu ➤ Components ➤ Insert Component

2. In the Insert Component: JIC Schematic Symbols dialog box, click the Relays and Contacts button.

3. In the JIC: Relays and Contacts dialog box, click the Relay Coil.

4. Respond to the prompts as follows:

 Specify insertion point: Position the component on the wire at line reference 403 near the neutral wire and click

 ![Diagram of relay coil with insertion point](image)
5 In the Insert/Edit Component dialog box, verify the Component Tag is set to CR403, and then click the Lookup button in the Catalog Data section of the dialog box.

6 In the Parts catalog list dialog box, select:
 MANUFACTURER: AB
 TYPE: TYPE P

 In the CATALOG, CONTACTS, MISCELLANEOUS2, DESCRIPTION list, select
 Catalog Number: 700-P200A1

7 Click the Catalog Check button to display the BOM information associated with the selected part number.

8 In the Bill Of Materials Check dialog box, click the Close button.

9 In the Parts catalog dialog box, click OK.

10 In the Insert/Edit Component dialog box, Description section, specify:
 Line 1: MASTER CONTROL
 Line 2: RELAY

11 In the Insert/Edit Component dialog box, Location code section, click the Drawing button.
In the All Locations - Drawing dialog box, select MCAB5, and then click OK.

In the Insert/Edit Component dialog box, Pins section, notice that the following pin values have been inserted based on the selected part:

Pins:
1: K1
2: K2

Click OK.

Any values entered here are saved as attribute values on the symbol itself.
Scooting Components

You may need to scoot the component if it was not inserted in the correct location.

To scoot a component

1. Click the Scoot tool.
2. Respond to the prompts as follows:
 - Select component, wire, or wire number for SCOOT:
 - Select the component that was just inserted at line reference 403 to:
 - Move the cursor to the right and click

The component is now in its new location.

You can use the Scoot tool to grab a component or a wire number and slide it back and forth along a wire. You can grab a wire or a whole rung of circuitry and scoot it to a new position, while keeping everything connected.

Inserting Child Components

The steps to insert a parent component and a child component are the same. The difference between them is when you annotate the symbol.
To insert a child component

1. Click the Insert Component tool.

 Menu: Components ➤ Insert Component

2. In the Insert Component: JIC Schematic Symbols dialog box, click the Relays and Contacts button.

3. In the JIC: Relays and Contacts dialog box, click the Relay N.O. Contact button.

4. Respond to the prompts as follows:
 Specifying insertion point:
 Position the cursor on the wire at line reference 404 near the hot wire and click (2)

5. In the Insert/Edit Child Component dialog box, Component Tag section, click the Drawing button.

6. In the Current Drawing list for FAMILY="CR" dialog box, select:
 MCAB5 CR403 MASTER CONTROL RELAY

 Click OK.
7 In the Insert/Edit Child Component dialog box, verify that the following options are specified:

- **Component Tag:** CR403
- **Description:**
 - Line 1: MASTER CONTROL
 - Line 2: RELAY
- **Cross-ref:** 403
- **Location code:** MCAB5
- **Pins:**
 - Pin 1: A1X
 - Pin 2: A1Y

Click OK.

The child component is inserted:

If necessary, use Edit Component to modify changes.
Aligning Components

Align the normally open relay with an existing component. After inserting a component, you can align or edit it as necessary.

To align a component.

1. Click the drop-down arrow on the Scoot tool to access the Align Components tool.

 Menu > Components ➤ Align

2. Respond to the prompts as follows:

 Pick component to align with (Horizontal/<Vertical>): *Select the normally open limit switch component near the hot wire at line reference 406 (1)*

 A dashed line appears.

 Select objects: *Select the previously inserted child contact component near the hot wire at line reference 404 (2)*

3. Right-click the selection.

 The aligned component is placed.

 Continue inserting your components.

Inserting Push Buttons

Insert a button for emergency stops.
To insert a push button

1. Click the Insert Component tool.
 - **Menu**: Components ➤ Insert Component

2. In the Insert Component: JIC Schematic Symbols dialog box, click the Push Buttons button.

3. In the JIC: Push Buttons dialog box, click the Mushroom Head N.C. push button.

4. Respond to the prompts as follows:
 - **Specify insertion point**: Position the push button on the wire at line reference 403 near the hot wire and click (3)

5. In the Insert/Edit Component dialog box, verify the following value:
 - **Component Tag**: PB403
 - In the Description section, specify:
 - **Line 1**: EMERGENCY STOP
 - In the Location code section, click the Drawing button.

6. In the All Locations - Drawing dialog box, select OPSTA3, and then click OK.

7. In the Insert/Edit Component dialog box, click OK.
Inserting Pilot Lights

Use the JIC: Pilot Lights dialog box to insert a pilot light.

To insert a pilot light

1. Click the Insert Component tool.

2. In the Insert Component: JIC Schematic Symbols dialog box, click the Pilot Lights button.

3. In the JIC: Pilot Lights dialog box, click the Green Press to Test Button.

4. Respond to the prompts as follows:
 - Specify insertion point: *Position the push button on the wire at line reference 404 near the neutral wire and click (4)*

5. In the Insert/Edit Component dialog box, verify the following value:
 - Component Tag: *LT404*
 - In the Description section, specify:
 - Line 1: *CONVEYOR*
 - Line 2: *ON*
 - In the Location code section, click the Drawing button.
6 In the All Locations - Drawing dialog box, select OPSTA3, and then click OK.

7 In the Insert/Edit Component dialog box, click OK.

Inserting System Reset Buttons

The last component you insert is the system reset button.

To insert a system reset button

1 Click the Insert Component tool.

 Menu Components ➤ Insert Component

2 In the Insert Component: JIC Schematic Symbols dialog box, click the Push Buttons button.

3 In the JIC: Push Buttons dialog box, click the Push Button N.O.

4 Respond to the prompts as follows:

 Specify insertion point:

 Position the push button on the middle of the wire at line reference 403 (5)
5. In the Insert/Edit Component dialog box, specify the following value:
 Component Tag: PB403A
 In the Description section, specify:
 Line 1: SYSTEM
 Line 2: RESET
 In the Location code section, click the Drawing button.

6. In the All Locations - Drawing dialog box, select OPSTA3, and then click OK.

7. Click OK on the Insert/Edit Component dialog box.
 Your finished schematic should resemble the following:

![Schematic Diagram]

Your finished schematic should resemble the following:
Generating Component Reports

AutoCAD Electrical can perform a project-wide extract of all components found on your wiring diagram set, including component tags, location codes, location references, description text, catalog information, and block names. This data can be formatted into various report configurations that can be output to a report file, exported to a spreadsheet or database program, or inserted on to an AutoCAD drawing.

To generate a schematic component report

1. Click the Schematic Reports tool.

 Menu ➤ Projects ➤ Reports ➤ Schematic Reports

2. In the Schematic Reports dialog box, select:

 Report Name: Component
 Component: Current drawing

 Verify that the following options have been specified:

 Options: Include Components, Include Cable Markers, Include Connectors
 Installation Codes to extract: All
 Location Codes to extract: All

Click OK.
3 Click OK in the QSAVE dialog box.

The generated report appears in Drawing Schematic Component report for all locations dialog box.

4 Use this dialog box to incorporate this information into your drawing, save it to a file, or to print the report.

5 In the Drawing Schematic Component report for all locations dialog box, click the Close button.

This is the end of this tutorial chapter.
In This Chapter

Drawings

An AutoCAD® drawing becomes AutoCAD® Electrical compatible as soon as you select a AutoCAD Electrical command to modify your drawing. An invisible block, WD_M, is automatically inserted right on your drawing. This block contains a number of attributes that define many AutoCAD Electrical settings.
Working with Templates

In AutoCAD Electrical, you can use templates (*.dwt files) to create drawings. Predefined templates, which contain settings for various drawings, such as acad.dwt or ACAD_ELECTRICAL.dwt, are supplied with AutoCAD Electrical. You can create your own templates, or use any drawing as a template. When you use a drawing as a template, the settings in that drawing are used in the new drawing.

Selecting Templates

Use the AutoCAD Electrical template to start a new drawing.

To select a template

1. Select File ➤ New.
2. In the Select template dialog box, select ACAD_ELECTRICAL.dwt, and then click Open.
Inserting Ladders

You can insert a ladder on a drawing at any time. A drawing may have multiple ladders, as well as single-phase and three-phase ladders. The ladders do not have to use the same parameters such as rung spacing, number of rungs, and ladder width.

To insert a single-phase ladder

1. Click the Insert Ladder tool.

2. In the Alert dialog box, select Force this drawing’s configuration setting to match the project settings option, and then click OK.

Your existing drawing format automatically becomes compatible with AutoCAD Electrical upon insertion of an invisible block, WD_M. Various settings are stored as invisible attribute values on this block. When you invoke an AutoCAD Electrical command and it does not find this invisible WD_M block on your drawing, the command pauses and prompts you for permission to insert the block automatically.
In the Insert New Ladder dialog box, specify:

- **Width:** 10.000
- **Spacing:** 1.0000
- **1st ref:** 1001
- **Length:** 20.000
- **Rungs:** 21
- **Phase:** 1 Phase

NOTE Reference 1001 represents Page 10, Reference 01.

Click OK.
4 Respond to the prompts as follows:
Specify start position of first rung: Enter 1.5,21, press ENTER

A single phase ladder is inserted in the drawing.

Use the same process to create three-phase ladder.
To insert a three-phase ladder

1. Click the Insert Ladder tool.

 Menu: Wires ➤ Ladders ➤ Insert Ladder

 In the Insert New Ladder dialog box, specify:
 - **Phase**: 3 Phase
 - **Spacing**: 0.5000
 - 1st ref: 1022
 - Index: 1

 Click OK.

2. Respond to the prompts as follows:
 - Specify start position of first rung: *Enter 16, 21*, press **ENTER**
 - Specify approximate position of last reference number (Z=zoom down, R=realtime pan): *Drag down to the bottom of the single-phase ladder, and click*
The new ladder is placed into the drawing.

Inserting 3-Phase Wires

You can insert vertical or horizontal 3-phase wiring. Three-phase wiring automatically breaks and reconnects to any underlying components that it finds in its path. If it crosses any existing wiring, wire-crossing gaps automatically insert.
To insert three-phase bus wiring

1. Click the drop-down arrow on the Insert Wire tool to access the Insert 3 Phase Wire tool.

 Menu ➤ Wires ➤ Insert 3 Phase Wire

2. In the 3-Phase Bus dialog box, verify the following default values are set:
 - Horizontal: Spacing: 0.7500
 - Vertical: Spacing: 0.5000
 - Starting at: component or another bus

 Click OK.

3. Respond to the prompts as follows:
 - Select component or bus for 3 phase wire: Select the first vertical wire at line reference 1022 and drag across other wires
 - Select component or bus for 3 phase wire: to: Click to place the 3 phase wire
The three-phase bus is inserted into the drawing:

Adding Drawings to Projects

You can add new drawings to your project at any time.

Before you add a new drawing to a project, it must be saved.
To save a file

1. Access the Save As command

 Menu ➤ File ➤ Save As

2. Navigate to the Aegs folder located several directories below Documents and Settings.

 Save in: Aegs

 File name: Enter DEMO10.dwg

 Click Save.

To add the current drawing to a project

1. Click the Project New/Existing tool.

 Menu ➤ Projects ➤ Project ➤ Project New/Existing

2. In the Project Aegs dialog box, click the Add Current button.

3. In the Add drawing(s) dialog box, click the One button.

4. In the Add Drawing to Project dialog box, select DEMO10.dwg, and then click the Open button.

 The drawing is added to your project.
Adding Drawing Descriptions

Add a description to define the drawing you added to the project.

To add a drawing description

1. In the Project Aegis dialog box, highlight DEMO10.dwg, and then click the Properties button.

2. In the Properties: Section/Sub-section Codes and Drawing Description dialog box, Optional description for this drawing section, specify: Conveyor Line

 ![Properties dialog box]

 Click OK.

 The description is now added to your drawing.

3. In the Project Aegis dialog box, Project Drawing List section, select the Description button to view the drawing descriptions.

 ![Project Drawing List]

This is the end of this tutorial chapter.
Programmable Logic Controller (PLC) modules are built dynamically when selected from the menu. From a small set of library symbols, hundreds of PLC modules can be built on request. This method allows the module to conform to the underlying ladder rung spacing, so you can add spacers and break the module at insertion time.
About PLC Modules

AutoCAD® Electrical generates any of hundreds of different PLC I/O modules on demand, in a variety of different graphical styles, all without a single, complete I/O module library symbol resident on the system. Modules automatically adapt to the underlying ladder rung spacing, whatever that value might be, and can even be stretched or broken into two or more pieces at insertion time.

Inserting PLC modules

AutoCAD Electrical builds a PLC I/O module as it is inserted. A PLC module is selected, the location is picked, and the module is constructed using a small set of library symbols.

To insert a PLC module

1. Open DEMO10.dwg, if it is not the current drawing.
2. Click the Insert PLC (Parametric) tool.
3. In the PLC Parametric Selection dialog box, select:
 - Allen-Bradley (manufacturer)
 - 1746 (series)
 - Discrete Input (type)
 - 1746-IA16 (part number)
 - Graphics Style: 2, Vertical Module
Click OK.
Respond to the prompts as follows:

Specify PLC module insert point (Z=zoom down, R=realtime pan): Specify first wire closer to neutral wire, ensure the X is directly on the horizontal wire (1), click

In the Module Layout dialog box, verify the following defaults are set:

- Spacing: 1.0000
- I/O Points: Insert all

Click OK.
6 In the I/O Point dialog box, specify the following values, and then click OK:
 Rack Number: 1
 Slot Number: 1

7 In the I/O Address dialog box, specify the beginning address:
 Beginning address: I:11/00

 NOTE You can also select the beginning address from the Quick picks list.

 Click OK.

8 In the I/O Addressing dialog box, click the Decimal button.
The PLC module is inserted into your drawing.
Removing Ladder Rungs

Use the wire cutters to remove the unused ladder rungs.

To remove ladder rungs

1 Click the Trim Wire tool.
 Menu ➤ Wires ➤ Trim Wire

2 Respond to the prompts as follows:
 Fence/Zext/<Select wire to TRIM>: Enter F, press ENTER
 First fence point: Select above the ladder rung at line reference 1018 (1)
 First fence point: to: Drag through the last ladder rung at line reference 1021 (2), click
 First fence point: to: Right-click to end the trim command

The ladder rungs are removed from your drawing.
Using Multiple Insert Component

You can insert components into wires that are tied to the PLC module. You can use the Multiple Insert Component tool to insert a string of normally open limit switches.

To insert a limit switch

1. Click the Multiple Insert Component tool.

 Menu ➤ Components ➤ Multiple Insert ➤ Multiple Insert (Icon Menu)

2. In the Insert Component: JIC Schematic Symbols dialog box, click the Limit Switches button.

3. In the JIC: Limit Switches dialog box, select Limit Switch, N.O.

4. Respond to the prompts as follows:
 - Component Fence, From Point: Select above the wire at line reference 1001 (1)
 - Component Fence, From Point: Drag below the wire at line reference 1003, click the point (2), right-click to end command

5. In the Keep dialog box, select Keep this one, Show edit dialog after each, and then click OK.

6. In the Insert/Edit Component dialog box, verify the following value:
 - Component Tag: LS1001
In the Description section, specify:

Line 1: PALLET ENTERING
Line 2: STATION

In the Location code section, specify: MACHINE

Click OK.

NOTE In the Insert/Edit Component dialog box, Component Tag section, you can use the Use PLC Address button to add the I/O Address as the component tag.

7 In the Keep dialog box, select Keep this one, Show edit dialog after each, and then click OK.

8 In the Insert/Edit Component dialog box, verify the following values:
 - Component Tag: LS1002
 - Location code: MACHINE

 In the Description section, specify:
 - Line 1: PALLET INSIDE
 - Line 2: STATION

 Click OK.

9 In the Keep dialog box, select Keep this one, Show edit dialog after each, and then click OK.

10 In the Insert/Edit Component dialog box, verify the following values:
 - Component Tag: LS1003
 - Location code: MACHINE

 In the Description section, specify:
 - Line 1: PALLET LEAVING
 - Line 2: STATION

 Click OK.

The normally open limit switches are inserted into the drawing.
To insert terminals

1. Click the Multiple Insert Component tool.
 - Menu: Components ➤ Multiple Insert ➤ Multiple Insert (Icon Menu)

2. In the Insert Component: JIC Schematic Symbols dialog box, click the Terminals/Connectors button.

3. In the JIC: Terminals and Connectors dialog box, click the Round with Terminal Number button.

4. Respond to the prompts as follows:
 - Component Fence, From Point: *Select above wire at line reference 1001 (1)*
 - Component Fence, From Point: to: *Select below wire at line reference 1016 (2), left click to end command, and then right-click to add terminal*

5. In the Keep dialog box, select Keep this one, Show edit dialog after each, and then click OK.
6 In the Terminals dialog box, specify:
 Tag-ID: TS1
 Terminal Number: 1
 Location code: MCAB

 Click OK.

7 In the Keep dialog box, select Keep all, don’t ask, unselect Show edit dialog after each, and then click OK.
The terminals are automatically added to your drawing.

This is the end of this tutorial chapter.
Wire Numbers

Wire numbers can be assigned to any and all existing wires on an individual selection, an entire drawing, selected drawings in a project, or an entire project.

In This Chapter

- About wire numbers
- Attaching source signal arrows
- Attaching destination signal arrows
- Inserting wire numbers
- Deleting wire numbers
About Wire Numbers

AutoCAD® Electrical assigns a unique wire number to each wire network. A wire network consists of one or more wires that are electrically connected.

Attaching Source Signal Arrows

You can attach a source signal to a wire segment of a wire network. This enables the wire number assigned to the network to jump and continue to another network on the current drawing or on one or more project drawings.

To attach a source signal arrow

1. Click the Project New/Existing tool.

 Menu ➤ Projects ➤ Project ➤ Project New/Existing

2. Double-click demo03.dwg to open drawing.

3. In the Drawing Modification dialog box, click the Save Changes button to save the changes to the current drawing.

4. Click the drop-down arrow on the Source Destination Signals tool to access the Source Signal Arrow tool.

 Menu ➤ Wires ➤ Signal References ➤ Source Signal Arrow
5. Respond to the prompts as follows:

Select wire end for Source: Select the end of the hot wire on the schematic on the right side of the drawing at line reference 332 (1).

6. In the Signal - Source Code dialog box, specify:

Code: 24 VDC

Click OK.
In the Source/Destination Signal Arrows dialog box, click No.

NOTE Click No to insert the signal arrows on the next drawing. Click OK to insert the signal arrows on the current drawing.

Click the Next Project Drawing tool to access demo04.dwg.

Now you are ready to insert a destination signal arrow.

Attaching Destination Signal Arrows

Once the source signal arrow is attached to the drawing, you can then attach a destination signal to a wire segment of a wire network. This enables the wire number assigned to another source wire network to automatically carry over to the current network.

To attach a destination signal

1. Click the drop-down arrow on the Source Destination Signals tool to access the Destination Signal Arrow tool.

 Menu

 | Wires ➤ Signal References ➤ Destination Signal Arrow |

2. Respond to the prompt as follows:

 Select wire end for Destination: Select the top of the hot wire on the schematic on the left side of the drawing at line reference 402 (2)
3 In the Insert Destination Code dialog box, click the Project button.

4 In the Signal codes -- Project-wide SOURCE dialog box, select the following:

 Code: 24 VDC

 Click OK.

5 In the Insert Destination Code dialog box, verify the following value:
 Code: 24 VDC

6 Click the OK + Update Source button.
Notice the cross-references for your signal are inserted into the drawing above the hot wire.

Use the same procedure to attach source and destination signals to the neutral wires.

1. Click the Previous Project Drawing button to return to demo03.dwg.
2. Click the drop-down arrow on the Source Destination Signals tool to access the Source Signal Arrow tool.
3. Respond to the prompts as follows:
 Select wire end for Source:
 Select the bottom of the neutral wire at line reference 332 (3)
4 In the Signal - Source Code dialog box, specify:
 Code: **24 VDC NEUTRAL**
 Click OK.

5 In the Source/Destination Signal Arrows dialog box, click No.

 ![Source/Destination Signal Arrows dialog box]

 NOTE Click No to insert the signal arrows on the next drawing. Click OK to insert the signal arrows on the current drawing.

6 Click the Next Project Drawing tool to access *demo04.dwg*.

7 Click the drop-down arrow on the Source Destination Signals tool to access the Destination Signal Arrow tool.

 Menu
 Wires ➤ Signal References ➤ Destination Signal Arrow

8 Respond to the prompt as follows:
 Select wire end for Destination:
 Select the top of the neutral wire at line reference 402 (4)
In the Insert Destination Code dialog box, click the Project button.

In the Signal codes -- Project-wide SOURCE dialog box, select the following option:

Click OK.
In the Insert Destination Code dialog box, verify the following value:

Code: 24 VDC NEUTRAL

Click the OK + Update Source button.

Notice the cross-references for your signal are inserted into the drawing above the neutral wire.

Now you can view the new signals.
To view signals

1. Click the drop-down arrow on the Source Destination Signals tool to access the Show Signal Path tool.

Menu

Wires ➤ Signal References ➤ Show Signal Paths

Temporary graphics are used to illustrate the flow of the signals on your drawings.

Inserting Wire Numbers

You can process and tag wires with sequential wire numbers or with wire numbers based upon the line reference location of the wire network. When wire numbers are automatically inserted into a drawing, the numbers will not be duplicated if they are defined on another network.

AutoCAD Electrical works from left to right, top to bottom as it processes wire networks.
To insert wire numbers automatically
1. Verify that demo04.dwg is the current drawing.
2. Zoom the top portion of the wire network on the left side of the drawing.
3. Click the Automatic Wire Numbers tool.
 Menu ➤ Wires ➤ Automatic Wire Numbers
4. In the Sheet 4 - Wire Tagging dialog box, click the Pick Individual Wires button.

 5. Respond to the prompts as follows:
 Select objects: Select the wire segment between the two push buttons on line reference 403 (1), right-click

 The wire number is placed.

To add wire numbers to the entire drawing
1. Click the Automatic Wire Numbers tool.
 Menu ➤ Wires ➤ Automatic Wire Numbers
2. In the Sheet 4 - Wire Tagging dialog box, click the Drawing-wide button.
 Wire numbers are assigned to each segment in your drawing.
To add wire numbers project wide

1. Click the Automatic Wire Numbers tool.
 - Menu: Wires ➤ Automatic Wire Numbers

2. In the Sheet 4 - Wire Tagging dialog box, click the Project-wide button.

3. In the Wire tagging (Project-wide) dialog box, verify the following settings:
 - Wire tag mode: Reference-based tags
 - To do: Tag/retag all
 - Freshen database (for Signals)

 Click OK.
Deleting Wire Numbers

You can use the Delete Wire Numbers tool to select a wire number or to pick on any wire of the network.

To delete a wire number

1. Click the Delete Wire Number tool.
 - **Menu**: Wires ➤ Delete Wire Number

2. Respond the prompt as follows:
 - Select objects: *Enter all*, press ENTER

 The wires in the network change to dashed lines, represented the wires from which the wire numbers will be erased.

3. Press ENTER again to erase the wire numbers.

 This is the end of this tutorial chapter.
Panel Layouts

AutoCAD® Electrical provides tools to create intelligent panel layout drawings. Layouts can be driven from information carried on the AutoCAD Electrical schematic drawings or they can be constructed independently of the schematics.
About Panel Layouts

AutoCAD Electrical places no requirements on special naming or attribute requirements on mechanical footprint symbols. This means that vendor supplied footprint symbols, in AutoCAD format, can be used as is with AutoCAD Electrical.

Inserting Panel Components

Using the AutoCAD Electrical Panel Layout tools, you can select from a list of schematic components and then place the footprint component directly into a panel layout. Once placed, the footprint remains linked to the original schematic components. This allows for bidirectional updating between schematic components and the associated footprint blocks.

For this exercise, use the Panel Layout tools:

You are now ready to select the components to insert on the panel layout.

To select schematic component footprints

1. Click the Project New/Existing tool.

 Menu: Projects ➤ Project ➤ Project New/Existing

2. Double-click demo08.dwg to open the Operator Station Layout drawing.

3. In the Drawing Modification dialog box, click the Save Changes button.
4 Click the drop-down arrow on the Insert Footprint tool to access the Insert Footprint (Schematic List) tool.

Menu
Panel Layout ➤ Insert Footprint (Schematic List)

5 In the Schematic Component List Panel Layout Insert dialog box, verify the following settings, and then click OK.

Extract component list for:
Project

Location Codes to extract:
All

![Schematic Components List - Panel Layout Insert](image)

Click OK.

6 In the Schematic Components Panel Layout list: select drawings to process dialog box, select `demo04.dwg`.

7 Click the Process button, verify `demo04.dwg` appears in the Drawing to Process section of the dialog box, and then click OK.
8 In the Schematic Components (current project) dialog box, click the Mark Existing button. An x marks the components that have already been placed in the project.
9 In the Schematic Components (current project) dialog box, Display section, select the Hide Existing radio button to display the schematic component footprints to be inserted into the panel layout.

You are now ready to begin manually inserting schematic component footprints on the panel layout.
To manually insert the emergency stop footprint

1. In the Schematic Components (current project) dialog box, select: PB403 OPSTA3 EMERGENCY STOP, and then click the Manual button.

NOTE The Manual button is used when schematic component footprints do not have a manufacturer and catalog number defined.

Next, you need to define a catalog assignment for an automatic footprint selection.
To make a catalog assignment

1 In the Footprint dialog box, Choice A section, click the Catalog lookup button.

 NOTE Use Choice B to enter a graphic without selecting a catalog number.

2 In the Parts Catalog dialog box, select:

 CATALOG, CONTACTS, DESCRIPTION 800T-D6A 1NO-1NC PUSH
 BUTTON-MUSHROOM, NEMA 4/13

 Click OK.

3 In the Footprint dialog box, Choice A section, verify the following values:

 Manufacturer AB
 Catalog 800T-D6A

 Click OK.
4. Respond to the prompts as follows:
 - Select Location for PB403: Select to the left of PB414A (1)
 - Select Location for PB403: <Ortho on> select ROTATION:
 - Right-click to place the push button

5. In the Panel Layout - Component Insert/Edit dialog box, click OK.
NOTE The Panel Layout - Component Insert/Edit dialog box is displayed each time you insert a panel footprint. Information from the schematic representation is automatically carried over to the panel footprint representation.

Now you’re ready to insert the system reset button on the panel layout.

To manually insert the system reset footprint

1 In the Schematics Components (current project) dialog box, select: PB403A OPSTA3 SYSTEM RESET, and then click the Manual button.

2 In the Footprint dialog box, Choice A section, click the Catalog lookup button.
3 In the Parts Catalog dialog box, select:

- **MANUFACTURER**: AB
- **TYPE**: 30.5mm FLUSH
- **STYLE**: *ALL*
- **CATALOG, CONTACTS, STYLE, DESCRIPTION**: 800T-A2A
- **1 NO 1 NC**
- **BLACK**
- **PUSH BUTTON - MOMENTARY, NEMA 4/13**

Click OK.

4 In the Footprint dialog box, Choice A section, verify the following values:

- **Manufacturer**: AB
- **Catalog**: 800T-A2A

Click OK.

5 Respond to the prompts as follows:

- **Select Location for PB403A**: *Select to the left of Conveyor Motor Start (2)*
- **Select Location for PB403A**: *(Ortho on)* select ROTATION:

 Right-click to place the push button
6 In the Panel Layout - Component Insert/Edit dialog box, click OK.

NOTE The Panel Layout - Component Insert/Edit dialog box is displayed each time you insert a panel footprint. Information from the schematic representation is automatically carried over to the panel footprint representation.

Now you’re ready to insert conveyor on light.
To manually insert the light footprint

1. In the Schematic Components (current project) dialog box, select LT404 OPTSTA3 CONVEYOR ON, and then click the Manual button.

2. In the Footprint dialog box, Choice A section, click the Catalog lookup button.

3. In the Parts Catalog dialog box, select:
 - MANUFACTURER: AB
 - TYPE: 30.5mm
 - VOLTAGE: *ALL*
 - CATALOG, MISCELLANEOUS1, VOLTAGE, DESCRIPTION: 800H-QRT24G PLASTIC LENS 24VAC/VDC FULL VOLT GREEN PILOT

NOTE To easily sort the Catalog list, select the Show list sorted by catalog part number on the Parts catalog dialog box.
Click OK.

4 In the Footprint dialog box, Choice A section, verify the following values:
Manufacturer AB
Catalog 800H-QRT24G

Click OK.
5 Respond to the prompts as follows:
Select Location for LT404: Select to the left of the conveyor running light (3)
Select Location for LT404: <Ortho on> select ROTATION:
Right-click to place the push button

6 In the Panel Layout - Component Insert/Edit dialog box, click OK.
In the Schematics Components (current project) dialog box, notice the master control relay still needs to be placed.

8 Click the Close button.

Modifying Attributes

You can align the inserted schematic component footprints with existing footprints.

To align footprints vertically

1 Click the drop-down arrow on the Scoot tool to access the Align tool.

2 Respond to the prompts as follows:

 Select component to align with (Horizontal/<Vertical>): *Enter V, press ENTER*

 Select component to align with (Horizontal/<Vertical>):
 Select the power on button on the top, left of the layout (1)

 Select objects:
 Select the three components that were just inserted (2-4), right-click

 ![Diagram](Image)

 The components are aligned vertically.

 Use the same procedure to align the schematic component footprints horizontally.
To align footprints horizontally

1 Click the Align tool.
 Menu Components ➤ Align

2 Respond to the prompts as follows:
 Select component to align with (Horizontal/<Vertical>): Enter H, press ENTER
 Select component to align with (Horizontal/<Vertical>):
 Select the conveyor running button (1)
 Select objects: Select LT404 (2), right click to align horizontally

3 Follow steps 1 and 2 to align the remaining footprints.
 You can also move component attributes.

To move an attribute

1 Click the Move/Show Attribute tool.
 Menu Components ➤ Attributes ➤ Move/Show Attribute

2 Respond to the prompts as follows:
 Select attribute to Move or pick on block graphics for list (W=Window move):
 Select LT404 (1)
 Select object: Right-click to select
 Base point: Select the base point, drag to the new location (2), right-click

The attribute is placed.
Inserting Nameplate Footprints

You are now ready to add nameplates to the panel layout.

To insert an automotive type name plate

1. Click the Insert Footprint tool.

 Menu

 Panel Layout ➤ Insert Footprint (Icon Menu)

2. In the Insert Footprint: Panel Layout Symbols dialog box, click the Nameplates button.

3. In the Panel: Nameplates dialog box, click the Nameplate, Catalog Lookup button.

4. In Nameplate dialog box, Choice A section, click the Catalog lookup button.

5. In the Parts Catalog dialog box, select:

 MANUFACTURER AB
 TYPE 800T Automotive
 COLOR_AND_ *ALL*
 CATALOG, MISCELLANEOUS1, MISCELLANEOUS2, COLOR_AND,
 DESCRIPTION 800T-X701 Red Blank Name Plate

Click OK.
6 In the Nameplate dialog box, Choice A section, verify the following values:
Manufacturer AB
Catalog 800T-X701

Click OK.

7 Respond to the prompts as follows:
Select objects: Select PB403 (1), right-click to the place the nameplate

8 In the Panel Layout - Nameplate Insert/Edit dialog box, click OK to insert the nameplate.

To insert a half round nameplate

1 Click the Insert Footprint tool.

Menu Panel Layout ➤ Insert Footprint (Icon Menu)

2 In the Insert Footprint: Panel Layout Symbols dialog box, click the Nameplates button.

3 In the Panel: Nameplates dialog box, click the Nameplate, Catalog Lookup button.

4 In the Nameplate dialog box, Choice A section, click the Catalog lookup button.
5 In the Parts Catalog dialog box, select:
MANUFACTURER AB
TYPE 800T Half Round
COLOR_AND_ *ALL*
CATALOG, MISCELLANEOUS1, MISCELLANEOUS2, COLOR_AND_, DESCRIPTION 800T-X59E Gray Custom Text Name Plate
Click OK.

6 In the Footprint dialog box, Choice A section, verify the following values:
Manufacturer AB
Catalog 800T-X59E
Click OK.
7 Respond to the prompts as follows:
 Select objects: Select PB403A (2), right-click to place the nameplate.

8 In the Panel Layout - Nameplate Insert/Edit dialog box, click OK to insert the nameplate.

The nameplate is inserted.
This is the end of this tutorial chapter.
Index

3-Phase Bus dialog box, 32

A
Add Drawings dialog box, 4
Alert dialog box, 27
align components, 18
All Locations-Drawing dialog box, 14
All Locations-drawing dialog box, 22
AutoCAD Electrical Help, 2

B
Browse for Folder dialog box, 4

C
catalog assignments, 69
component fence, 44
component reports, 23
components
aligning, 18
child, 16
parent, 12
scooting, 15
Create New Project File dialog box, 3
Current Drawing List for Family="CR" dialog box, 16
drawing descriptions, 35
drawings
in projects, 4, 34
viewing within a project, 5
dialog boxes (continued)
Alert, 27
All Locations-Drawing, 14, 19, 21
All Locations-drawing, 22
Browse for Folder, 4
Create New Project File, 3
Current Drawing List for FAMILY="CR", 16
Drawing Extract for All Locations, 24
Drawing Modification, 64
I/O Address, 41
I/O Addressing, 41
I/O Point, 41
Insert New Ladder, 28, 30
Insert/Edit Component, 14
Insert/Edit Contact, 17
Keep, 44, 46, 47
Module Layout, 40
Panel Layout-Component Insert/Edit, 70
Parts Catalog, 13
PLC I/O Module Selection/Insert, 38
Qsave, 24
Schematic Component Report, 23
Schematic Components, 66
Select Template, 26
Sheet 4-Insert Destination Code, 53, 56
Signal Codes-Project-wide Source, 53
Signal-Source Code, 51
Source/Destination Signal Arrows, 52, 55
Terminals, 47
drawing descriptions, 35
Drawing Extract for All Locations dialog box, 24
Drawing Modification dialog box, 64
drawings
in projects, 4, 34
viewing within a project, 5

Index | 83
exercises
prerequisites, 2
setting up for, 3

footprints
aligning horizontally, 78
aligning vertically, 77
manual insertion, 68

Help systems, AutoCAD Electrical, 2

I/O Address dialog box, 41
I/O Addressing dialog box, 41
I/O Point dialog box, 41
Insert New Ladder dialog box, 28, 30
Insert/Edit Component dialog box, 14
Insert/Edit Contact dialog box, 17

Keep dialog box, 44, 46, 47

ladder rungs, removing, 43
ladders
single-phase, 27
three-phase, 30

Module Layout dialog box, 40

name plates, 78

Panel Layout-Component Insert/Edit dialog box, 70
Parts Catalog dialog box, 13
PLC I/O Module Selection/Insert dialog box, 38
PLC modules, 38
prerequisites for exercises, 2
projects for exercises, 3

Qsave dialog box, 24

reports, 23

Schematic Component Report dialog box, 23
schematic component reports, 23
Schematic Components dialog box, 66
schematic symbols
green press to test pilot light, 20
limit switch button, 44
normally open limit switch, 44
normally open push button, 21
normally open relay, 16
pilot lights, 20
push buttons, 19, 21
relays button, 12, 16
standard coil, 12
terms and connectors, 46
scooting components, 15
Select Template dialog boxes, 26
Sheet 4-Insert Destination Code dialog box, 53, 56
Signal Codes-Proj-wide Source dialog box, 53
signals
destination, 52
source, 50
Signal-Source Code dialog box, 51
source signals, 50
Source/Destination Signal Arrows dialog box, 52, 55

Terminals dialog box, 47
terms and connectors, 46
three-phase bus wiring, 32

wire numbers, 59
avtomatic, 59
deleting, 61
projects, 60
wires
single-phase, 8
three-phase bus, 32
trimming, 10